Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01022
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/201912301022
Published online 22 October 2019
  1. Tiutiunyk, V.V. Ivanets, H.V., Tolkunov, I.A., & Stetsyuk, E.I. (2018). System approach for readiness assessment units of civil defense to actions at emergency situations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 99-105. https://doi.org/10.29202/nvngu/2018-1/7 [CrossRef] [Google Scholar]
  2. Vasiliev, M.I., Movchan, I.O., & Koval, O.M. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 106-113. [Google Scholar]
  3. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., & Hurenko, O (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3(10-87), 63-73. https://doi.org/10.15587/1729-4061.2017.102314 [Google Scholar]
  4. Rybalova, O., & Artemiev, S. (2017). Development of a procedure for assessing the environmental risk of the surface water status deterioration. Eastern-European Journal of Enterprise Technologies, 5(10-89), 67-76. https://doi.org/10.15587/1729-4061.2017.112211 [CrossRef] [Google Scholar]
  5. Semko, A.N., Beskrovnaya, M.V., Vinogradov, S.A., Hritsina, I.N., & Yagudina, N.I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52(3), 655-664. [Google Scholar]
  6. Andronov, V.A., Danchenko, Yu.M., Skripinets, A.V., Bukhman, O.M. (2014). Efficiency of utilization of vibration-absorbing polimer coating for reducing local vibration Terms and conditions Privacy policy. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 85-91. [Google Scholar]
  7. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., & Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6(10-90), 11-16. https://doi.org/10.15587/1729-4061.2017.114504 [CrossRef] [Google Scholar]
  8. Bondarenko, V., Kovalevs’ka, I., Ganushevych, K. (2014). Progressive Technologies of Coal, Coalbed Methane, and Ores Mining. https://doi.org/10.1201/b17547 [Google Scholar]
  9. Bondarenko, V., Kovalevs’ka, I., & Fomychov, V. (2012). Features of carrying out experiment using finite-element method at multivariate calculation of “mine massif – Combined support” system. Geomechanical Processes during Underground Mining: School of Underground Mining 2012, 7-13. https://doi.org/10.1201/b13157-3 [CrossRef] [Google Scholar]
  10. Kovalevs’ka, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 159-163. https://doi.org/10.1201/b16354-28 [Google Scholar]
  11. DSTU B V.1.1-4-98. (1999). Zakhyst vid pozhezhi. Budivelni konstruktsii. Metody vyprobuvannia na vohnestiikist. Zahalni vymohy. Kyiv: Ukrarkhbudinform. [Google Scholar]
  12. Korneeva, S. & Neutov, M. (2017). Suriyaninov, Experimental studies of fiber concrete creep, MATEC Web of Conferences, (116), 02021. https://doi.org/10.1051/matecconf/201711602021 [CrossRef] [EDP Sciences] [Google Scholar]
  13. Garlińska, U., Michalak, P., & Popielarczyk, T. (2015). Szacowanie możliwości utraty nośności konstrukcji budowlanej w warunkach pożaru. Bezpieczeństwo i Technika Pożarnicza 2015, 39(3), 59-66. https://doi.org/10.12845/bitp.39.3.2015.5 [Google Scholar]
  14. Garlińska, U., Michalak, P., & Popielarczyk, T. (2016). Subiektywna ocena możliwości utraty nośności konstrukcji budowlanej w warunkach pożaru. Bezpieczeństwo i Technika Pożarnicza 2015, 43(3), 37-44. https://doi.org/10.12845/bitp.43.3.2016.3 [Google Scholar]
  15. Biskupska, N., & Szymkuć, W. (2016). Towards the simplified modelling of thermal and mechanical response of steel tubular columns exposed to localized fire. In 12th International Conference “Modern Building Materials, Structures and Techniques”. Artykuł przyjęty do publikacji w “Procedia Engineering”. [Google Scholar]
  16. Obiala, R., Vassart, O., Zhao, B., Sakji, M.S, de la Quintana J., Morente, F., Franssen, J.-M., & Lansival, J.-B. (2010). Fire safety of industrial halls – A valorisation project. Research Fund for Coal and Steel. Final report RFS2-CT-2007-00032. [Google Scholar]
  17. Lange, D., & Sjostrom, J. (2014). Mechanical response of a partially restrained column exposed to localised fires. Fire Safety Journal, (67), 82-95. [Google Scholar]
  18. Correia, A.J.P.M., & Rodrigues, J.P.C., Vila Real, P. (2014). Thermal bowing on steel columns embedded on walls under fire conditions. Fire Safety Journal, (67), 53-69. [Google Scholar]
  19. Yakovlev, A.I. (1988). Raschet ognestoykosti stroitel’nykh konstrukciy. Moskva: Stroyizdat. [Google Scholar]
  20. Surianinov, M., & Shyliaiev, O. (2018). Calculation of plate-beam systems by method of boundary elements. International Journal of Engineering and Technology (UAE), 7(2), 238-241. https://doi.org/10.14419/ijet.v7i2.23.11927 [CrossRef] [Google Scholar]
  21. Dashhenko, A.F., Lazareva, D.V., Sur’yaninov, N.G. (2011). ANSYS v zadachakh inzhenernoy mekhaniki. Odesa. [Google Scholar]
  22. Otrosh, Y., Kovalov, A., Semkiv, O., Rudeshko, I., & Diven, V. (2018). Methodology remaining lifetime determination of the building structures. MATEC Web of Conferences, (230), 02023. https://doi.org/10.1051/matecconf/201823002023 т [CrossRef] [EDP Sciences] [Google Scholar]
  23. Andronov, V., Pospelov, B., & Rybka, E. (2016). Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects. Eastern-European Journal of Enterprise Technologies, 4(5-82), 38-44. https://doi.org/10.15587/1729-4061.2016.75063 [CrossRef] [Google Scholar]
  24. Andronov, V., Pospelov B., Rybka, E., & Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3(9-87), 53-59. https://doi.org/10.15587/1729-4061.2017.101985 [CrossRef] [Google Scholar]
  25. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, (60), 00003. https://doi.org/10.1051/e3sconf/20186000003 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.