Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01024
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/201912301024
Published online 22 October 2019
  1. Mineral and Energy Economy Research Institute. (2018). Hard coal mining in Poland in 2017. Cracow. [Google Scholar]
  2. World Steel Association. (2019). World Steel in Figures 2018. Brussels. [Google Scholar]
  3. Michalak, J. (2012). Comparative analysis of coal and nuclear investment profitability. Energy Policy Journal, 15(4), 187-199. [Google Scholar]
  4. Wasilewska-Błaszczyk, M. & Mucha, J. (2017). Geochemical modeling of the Cu-Ag deposits from the Lubin-Głogów Copper District (Poland) supported by lithological modeling. Mineral Resources Management, (33), 63-78. http://doi.org/10.1515/gospo-2017-0049 [Google Scholar]
  5. Kowalczyk, I., Galica, D., Dyczko, A., Kołomański, D., & Mól, D. (2016). The geological model of deposit – the method of construction, role and meaning in the process planning and scheduling of exploitation. The Bulletin of The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, (92), 413-425. [Google Scholar]
  6. Rocchi, L., Carter, P., & Stone, P. (2011). Sequence optimization in longwall coal mining. Journal of Mining Science, 47(2), 151-157. https://doi.org/10.1134/s106273914702002x [CrossRef] [Google Scholar]
  7. Zorychta, A., & Burtan, Z. (2008). Uwarunkowania i kierunki rozwoju technologii podziemnej eksploatacji złóż w polskim górnictwie węgla kamiennego. Gospodarka Surowcami Mineralnymi, 24(1/2). [Google Scholar]
  8. Alford, C., Brazil, M., & Lee, D.H. (n.d.). Optimisation in Underground Mining. Handbook Of Operations Research In Natural Resources, 561-577. http://doi.org/10.1007/978-0-387-71815-6_30 [Google Scholar]
  9. Boucher, A., Dimitrakopoulos, R., & Vargas-Guzmán, J. A. (2005). Joint Simulations, Optimal Drillhole Spacing and the Role of the Stockpile. Quantitative Geology and Geostatistics, 35-44. https://doi.org/10.1007/978-1-4020-3610-1_4 [CrossRef] [Google Scholar]
  10. Poniewierski, J., MacSporran, G., & Sheppard, I. (2003). Optimization of Cut-Off Grade at Mount Isa Mines Limited’s Enterprise Mine. In Mine Planning and Equipment Selection (pp. 531-538). Kalgoorlie, Western Australia. [Google Scholar]
  11. Copur, H., Ozdemir, L., & Rostami, J. (1998). Roadheader applications in mining and tunneling industries. Mining Engineering, (50), 38-42. [Google Scholar]
  12. Brazil, M., Lee, D., Rubinstein, J., Thomas, D., Weng, J., & Wormald, N. (2002). A network model to optimise cost in underground mine design. Transactions of the South African Institute of Electrical Engineers, (93), 97-103. [Google Scholar]
  13. Brazil, M. & Grossman, P.A. (2008) Access layout optimisation for underground mines. In Australian Mining Technology Conference (pp. 119-123). Twin Waters, Queensland. [Google Scholar]
  14. Brazil, M., Lee, D., Rubinstein, J.H., Thomas, D.A., Weng, J.F., & Wormald, N.C. (2004) Optimisation in the design of underground mine access. In Uncertainty and Risk Management in Orebody Modelling and Strategic Mine Planning (ed: R Dimitrakopoulos) (pp.121-124). The Australasian Institute for Mining and Metallurgy Spectrum Series. [Google Scholar]
  15. Brzychczy, E., & Wnuk-Lipiński, P. (2013). Knowledge-based modeling and multi-objective optimization of production in underground coal mines. AGH Journal of Mining and Geoengineering, 37(1), 13. https://doi.org/10.7494/mining.2013.37.1.13 [CrossRef] [Google Scholar]
  16. Brzychczy, E. (2011). The planning optimization system for underground hard coal mines. Archives of Mining Sciences, 56(2), 161-178. [Google Scholar]
  17. Little, J., & Topal, E. (2011). Strategies to assist in obtaining an optimal solution for an underground mine planning problem using Mixed Integer Programming. International Journal of Mining and Mineral Engineering, 3(2), 152. https://doi.org/10.1504/ijmme.2011.042429 [Google Scholar]
  18. Carlyle, W.M., & Eaves, B.C. (2001). Underground Planning at Stillwater Mining Company. Interfaces, 31(4), 50-60. https://doi.org/10.1287/inte.31.4.50.9669 [Google Scholar]
  19. Nehring, M., & Topal, E. (2007). Production schedule optimisation in underground hard rock mining using mixed integer programming. In Project Evaluation Conference 2007 (pp. 169-175). Melbourne, VIC, Australia. [Google Scholar]
  20. Carpentier, S., Gamache, M., & Dimitrakopoulos, R. (2016). Underground long-term mine production scheduling with integrated geological risk management. Mining Technology, 125(2), 93-102. https://doi.org/10.1179/1743286315y.0000000026 [CrossRef] [Google Scholar]
  21. Grzybek, I., & Respondek, A. (2012). Polskie doświadczenia w zakresie odgazowania złóż węgla. Wiadomości Naftowe i Gazownicze 2012, (5), 4-10. [Google Scholar]
  22. Krause, E., & Gajdowska, M. (2013). Prognozowany dopływ metanu do szybów wydechowych kopalń węgla kamiennego o najwyższej metanowości w latach 2013-2020. Górnictwo i Geologia, (8), 61-74. [Google Scholar]
  23. Turek, M. (2008). Postęp dobowy ścian ważnym składnikiem procesu restrukturyzacji technicznej. Przegląd Górniczy, 64(2), 3-9. [Google Scholar]
  24. Szlązak, N., & Szlązak, J. (2013). Wentylacja wyrobisk ścianowych w kopalniach węgla kamiennego, w warunkach zagrożeń metanowego i pożarowego. Górnictwo i Geologia, (8), 115-131. [Google Scholar]
  25. Koptoń, H., & Wierzbiński, K. (2016). Analiza wentylacyjno-metanowa, jako narzędzie dla bieżącej oceny poziomu zagrożenia metanowego w kopalniach węgla kamiennego. Systemy Wspomagania w Inżynierii Produkcji – Górnictwo: perspektywy i zagrożenia, (13), 267-278. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.