Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01025
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/201912301025
Published online 22 October 2019
  1. Laznikov, O.M. (2016). Substantiation of rational mining method at the Motronivskyi titanium-zirconium ore deposit exploration. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 41. [Google Scholar]
  2. Sobko, B., Drebenstedt, C., & Lozhnikov, O. (2017). Selection of environmentally safe open-pit technology for mining water-bearing deposits. Mining of Mineral Deposits, 11(3), 70-75. https://doi.org/10.15407/mining11.03.070 [CrossRef] [Google Scholar]
  3. Liu, J., & Bongaerts, J. C. (2014). Mine Planning and Equipment Selection Supply Chain of Rare Earth Elements (REEs). Mine Planning and Equipment Selection, 1419-1426. https://doi.org/10.1007/978-3-319-02678-7_136 [CrossRef] [Google Scholar]
  4. Padmalal, D., & Maya, K. (2014). Impacts of River Sand Mining. Sand Mining, 31-56. https://doi.org/10.1007/978-94-017-9144-1_4 [Google Scholar]
  5. Shokri, A., Haddad, O. B., & Mariño, M. A. (2013). Reservoir Operation for Simultaneously Meeting Water Demand and Sediment Flushing: Stochastic Dynamic Programming Approach with Two Uncertainties. Journal of Water Resources Planning and Management, 139(3), 277-289. https://doi.org/10.1061/(asce)wr.1943-5452.0000244 [CrossRef] [Google Scholar]
  6. Gumenik, I., Lozhnikov, A., & Maevskiy, A. (2012). Methodological principles of negative opencast mining influence increasing due to steady development. Geomechanical Processes During Underground Mining, 45–49. https://doi.org/10.1201/b13157-9 [CrossRef] [Google Scholar]
  7. Lawrence, S., & Davies, P. (2014). The Sludge Question: The Regulation of Mine Tailings in Nineteenth-Century Victoria. Environment and History, 20(3), 385-410. https://doi.org/10.3197/096734014x14031694156448 [CrossRef] [Google Scholar]
  8. Panchang, R. (2014). Sand Mining and Industrial Effluents Threaten Mangroves Along Central West Coast of India. Open journal of ocean and coastal sciences, (1). [Google Scholar]
  9. Yim, W. W.-S. (2017). Tin Placer Deposits on Continental Shelves. Handbook of Marine Mineral Deposits, 27-66. https://doi.org/10.1201/9780203752760-3 [CrossRef] [Google Scholar]
  10. Fergusson, D.L. (2013). The Conversion and Sustainable Use of Alumina Refinery Residues: Global Solution Examples. Essential Readings in Light Metals, 965-973. https://doi.org/10.1002/9781118647868.ch134 [CrossRef] [Google Scholar]
  11. Humsa, T. Z., & Srivastava, R. K. (2015). Impact of Rare Earth Mining and Processing on Soil and Water Environment at Chavara, Kollam, Kerala: A Case Study. Procedia Earth and Planetary Science, (11), 566-581. https://doi.org/10.1016/j.proeps.2015.06.059 [CrossRef] [Google Scholar]
  12. Kulikova, D.V., & Pavlychenko, A.V. (2016). Estimation of ecological state of surface water bodies in coal mining region as based on the complex of hydrochemical indicators. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4). [Google Scholar]
  13. Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2013). The investigation of coal mines influence on ecological state of surface water bodies. Mining of Mineral Deposits, 303-305. https://doi.org/10.1201/b16354-56 [CrossRef] [Google Scholar]
  14. Moila, A. (2017). The application of process mineralogy on a tailings sample from a beach placer deposit containing rare earth elements. Journal of the Southern African Institute of Mining and Metallurgy, 117(7), 615-621. https://doi.org/10.17159/2411-9717/2017/v117n7a2 [CrossRef] [Google Scholar]
  15. Barber, N.L. (2014). Summary of estimated water use in the United States in 2010. Fact Sheet. https://doi.org/10.3133/fs20143109 [Google Scholar]
  16. Rodgher, S., de Azevedo, H., Ferrari, C.R., Roque, C.V., Ronqui, L.B., de Campos, M.B., & Nascimento, M.R. L. (2012). Evaluation of surface water quality in aquatic bodies under the influence of uranium mining (MG, Brazil). Environmental Monitoring and Assessment, 185(3), 2395-2406. https://doi.org/10.1007/s10661-012-2719-5 [CrossRef] [PubMed] [Google Scholar]
  17. Perreault, T. (2012). Dispossession by Accumulation? Mining, Water and the Nature of Enclosure on the Bolivian Altiplano. Antipode, 45(5), 1050-1069. https://doi.org/10.1111/anti.12005 [Google Scholar]
  18. Yang, X. J., Lin, A., Li, X. L., Wu, Y., Zhou, W., & Chen, Z. (2013). China’s ion-adsorption rare earth resources, mining consequences and preservation. Environmental Development, (8), 131-136. https://doi.org/10.1016/j.envdev.2013.03.006 [CrossRef] [Google Scholar]
  19. Ramani, S., Dragun, Z., Kapetanović, D., Kostov, V., Jordanova, M., Erk, M., & Hajrulai-Musliu, Z. (2014). Surface Water Characterization of Three Rivers in the Lead/Zinc Mining Region of Northeastern Macedonia. Archives of Environmental Contamination and Toxicology, 66(4), 514-528. https://doi.org/10.1007/s00244-014-0012-z [CrossRef] [PubMed] [Google Scholar]
  20. Hao, X., Wang, D., Wang, P., Wang, Y., & Zhou, D. (2016). Evaluation of water quality in surface water and shallow groundwater: a case study of a rare earth mining area in southern Jiangxi Province, China. Environmental monitoring and assessment, 188(1), 24. https://doi.org/10.1007/s10661-015-5025-1 [CrossRef] [PubMed] [Google Scholar]
  21. Dai, Z., Feng, X., Zhang, C., Shang, L., & Qiu, G. (2013). Assessment of mercury erosion by surface water in Wanshan mercury mining area. Environmental Research, (125), 2-11. https://doi.org/10.1016/j.envres.2013.03.014 [CrossRef] [PubMed] [Google Scholar]
  22. Armah, F.A., Luginaah, I.N., Taabazuing, J., & Odoi, J.O. (2013). Artisanal gold mining and surface water pollution in Ghana: have the foreign invaders come to stay? Environmental Justice, 6(3), 94-102. https://doi.org/10.3390/wsf3-a002 [CrossRef] [Google Scholar]
  23. Modoi, O. C., Roba, C., Török, Z., & Ozunu, A. (2014). Environmental risks due to heavy metal pollution of water resulted from mining wastes in NW Romania. Environmental Engineering & Management Journal (EEMJ), 13(9). https://doi.org/10.30638/eemj.2014.260 [Google Scholar]
  24. Atanacković, N., Dragišić, V., Stojković, J., Papić, P., & Živanović, V. (2013). Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality. Environmental Science and Pollution Research, 20(11), 7615-7626. https://doi.org/10.1007/s11356-013-1959-4. [CrossRef] [Google Scholar]
  25. Qiao, W., Li, W., Li, T., Chang, J., & Wang, Q. (2017). Effects of coal mining on shallow water resources in semiarid regions: a case study in the Shennan mining area, Shaanxi, China. Mine Water and the Environment, 36(1), 104-113. https://doi.org/10.1007/s10230-016-0414-4 [CrossRef] [Google Scholar]
  26. Lima, A.T., Mitchell, K., O’Connell, D.W., Verhoeven, J., & Van Cappellen, P. (2016). The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation. Environmental Science & Policy, (66), 227-233. https://doi.org/10.1016/j.envsci.2016.07.011 [CrossRef] [Google Scholar]
  27. Angelovičová, L., & Fazekašová, D. (2014). Contamination of the soil and water environment by heavy metals in the former mining area of Rudňany (Slovakia). Soil and water research, 9(1), 18-24. https://doi.org/10.17221/24/2013-swr [CrossRef] [Google Scholar]
  28. Ali, A., Strezov, V., Davies, P., & Wright, I. (2017). Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia. Environmental monitoring and assessment, 189(8), 408. https://doi.org/10.1007/s10661-017-6110-4 [CrossRef] [PubMed] [Google Scholar]
  29. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(13), 599-606. https://doi.org/10.5593/sgem2017/13/s03.076 [Google Scholar]
  30. Sobko, B.Y., & Lozhnikov, O.V. (2018). Determination of cut-off wall cost efficiency at Motronivskyi pit mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 44-49. https://doi.org/10.29202/nvngu/2018-3/1 [CrossRef] [Google Scholar]
  31. Sauchyn, D.J., St-Jacques, J.M., & Luckman, B.H. (2015). Long-term reliability of the Athabasca River (Alberta, Canada) as the water source for oil sands mining. Proceedings of the National Academy of Sciences, 112(41), 12621-12626. https://doi.org/10.1073/pnas.1509726112 [CrossRef] [Google Scholar]
  32. Evans, D.M., Zipper, C.E., Hester, E.T., & Schoenholtz, S.H. (2015). Hydrologic effects of surface coal mining in Appalachia (US). JAWRA Journal of the American Water Resources Association, 51(5), 1436-1452. https://doi.org/10.1111/1752-1688.12322 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.