Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01033
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/201912301033
Published online 22 October 2019
  1. Bondarenko, V., Kovalevs’ka, I., & Fomychov, V. (2012). Features of carrying out experiment using finite-element methodat multivariate calculation of mine massif – combined support system. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 7-13. https://doi.org/10.1201/b13157-3 [Google Scholar]
  2. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30. [Google Scholar]
  3. Lozynskyi, V., Dychkovskyi, R., Saik, P., Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/SSP.277.66 [CrossRef] [Google Scholar]
  4. Bondarenko, V., Maksymova, E., & Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 115-119. https://doi.org/10.1201/b16354-21 [Google Scholar]
  5. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive Technologies of Coal, Coalbed Methane, and Ores Mining. (2014). https://doi.org/10.1201/b17547 [Google Scholar]
  6. Khomenko, O., Kononenko, M., Myronova, I., & Sudakov, A. (2018). Increasing ecological safety during underground mining of iron-ore deposits deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 29-38. [CrossRef] [Google Scholar]
  7. Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6 [CrossRef] [Google Scholar]
  8. Kovalevs’ka, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 159-163. https://doi.org/10.1201/b16354-28 [Google Scholar]
  9. Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik, P.B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22-28. [Google Scholar]
  10. Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of Western Bonbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 26-32. [Google Scholar]
  11. Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 125-132. https://doi.org/10.1201/b16354-23 [Google Scholar]
  12. Kovalevska, I., Zhuravkov, M., Chervatiuk, V., Husiev, O., & Snihur, V. (2019). Generalization of trends in the influence of geomechanics factors on the choice of operation modes for the fastening system in the preparatory mine workings. Mining of Mineral Deposits, 13(3), 1-10. https://doi.org/10.33271/mining13.03.001 [Google Scholar]
  13. Kyrychenko, Y., Samusia, V., Kyrychenko, V., & Goman, O. (2012). Experimental investigation of aeroelastic and hydroelastic instability parameters of a marine pipeline. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 163-167. [CrossRef] [Google Scholar]
  14. Falshtynskyy, V., Dychkovskyy, R., Lozynskyy, V., & Saik, P. (2012). New method for justification the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 201-208. https://doi.org/10.1201/b13157-35 [CrossRef] [Google Scholar]
  15. Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66. [Google Scholar]
  16. Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1-10. https://doi.org/10.1201/b16355-2 [Google Scholar]
  17. Kovalevska, I., Barabash, M., & Snihur, V. (2018). Development of a research methodology and analysis of the stress state of a parting under the joint and downward mining of coal seams. Mining of Mineral Deposits, 12(1), 76-84. https://doi.org/10.15407/mining12.01.076 [CrossRef] [Google Scholar]
  18. Khomenko, O. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54. [Google Scholar]
  19. Zhanchiv, B., Rudakov, D., Khomenko, O., & Tsendzhav, L. (2013). Substantiation of mining parameters of Mongolia uranium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 10-18. [Google Scholar]
  20. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 231-235. https://doi.org/10.1201/b16354-43 [Google Scholar]
  21. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 147-150. https://doi.org/10.1201/b13157-26 [CrossRef] [Google Scholar]
  22. Khomenko, O., Tsendjav, L., Kononenko, M., & Janchiv, B. (2017). Nuclear-and-fuel power industry of Ukraine: production, science, education. Mining of Mineral Deposits, 11(4), 86-95. https://doi.org/10.15407/mining11.04.086 [CrossRef] [Google Scholar]
  23. Cook, J., Growcock, F., Guo, Q., Hodder, M., & van Oort, E. (2011). Stabilizing the wellbore to prevent lost circulation. Oilfield Review, 23(4), 26-35. [Google Scholar]
  24. Ashok Kumar Santra, B.R. Reddy, & Mfon Antia (2007). Designing Cement Slurries for Preventing Formation Fluid Influx After Placement. International Symposium on Oilfield Chemistry, (28) February-2 March, Houston, Texas, U.S.A. SPE-106006-MS https://doi.org/10.2118/106006-MS [Google Scholar]
  25. Fedorov, B., Ratov, B., & Sharauova, A. (2017). Development of the model of petroleum well boreability with PDC bore bits for Uzen oil field (the Republic of Kazakhstan) Eastern-European Journal of Enterprise Technologies, 3(1(87), 16-22.DOI: https://10.15587/1729-4061.2017.99032 [CrossRef] [Google Scholar]
  26. Yu, H., Li, L., Zheng, J., Ji, W., Qin, X., Fu, X., & Gao, W. (2016). New Method of Steam Channeling Plugging in Horizontal Wells of Heavy Oil Steam Stimulation. In SPE Latin America and Caribbean Heavy and Extra Heavy Oil Conference. SPE-181173-MS. [Google Scholar]
  27. Liu, Y., Song, T., & Xu, Y. (2016). A new evaluation method for micro-fracture plugging in high-temperature deep wells and its application: A case study of the Xushen Gas Field, Songliao Basin. Natural Gas Industry, 3(2), 158-164. [CrossRef] [Google Scholar]
  28. Sudakov, A.K., Dreus, A.Yu., Khomenko, O.Ye., & Sudakova, D.A. (2017). Analitic study of heat transfer in absorbing horizon of boreholes in the formation of protection cryogenic plugging material. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3(159), 32-46. [Google Scholar]
  29. Brazhenenko, A.M., Goshovskiy, S.V., & Sudakov, A.К. (2007). Tamponazh gornykh porod pri burenii geologorazvedochnykh skvazhin legko-plavkimi materialami. Kyiv: Ukrainskyi derzhavnyi heoloho-rozviduvalnyi instytut. [Google Scholar]
  30. Sudakova, D.A. (2018). Substantiation of parameters of technology insulation of absorbing horizons of boreholes. PhD Thesis. Ivano-Frankivsk, Ukraine: Ivano-Frankivsk National Technical University of Oil and Gas. [Google Scholar]
  31. Sudakov, A.K. (1999). Modern technologies and materials, applied for liquidation of absorptions of washing liquid. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 98-102. [Google Scholar]
  32. Sudakova, D.A. (2017). Rezul’taty analiza tekhnologiy tamponirovaniya pogloshchayushchikh gorizontov burovykh skvazhin. In Shkola pidzemnoi rozrobky (pp. 101-102). Berdiansk, Ukraine: Natsionalnyi hirnychyi universytet. [Google Scholar]
  33. Sudakov, A.K. (2000). Tekhnologiya izolyatsii zon pogloshcheniya burovykh skvazhin s primeneniem termoplastichnykh materialov. PhD Thesis. Dnipropetrovsk, Ukraine: NHU. [Google Scholar]
  34. Taninskiy, P.Yu. (2000). Vybor legkoplavkikh svyazuyushchikh materialov dlya ekologicheski chistogo bestrubnogo krepleniya skvazhin. PhD Thesis. Sankt-Peterburg, Russia. [Google Scholar]
  35. Kuzin, Yu. L., & Sudakova, D.A. (2016). O vozmozhnosti primeneniya bytovykh otkhodov dlya izolyatsii pogloshchayushchikh gorizontov burovykh skvazhin. Porodorazrushayushchiy i metalloobrabatyvayushchiy instrument – tekhnika i tekhnologiya ego izgotovleniya i primeneniya, (19), 92-96. [Google Scholar]
  36. Isakova, M., & Sudakova, D. (2016). Thermoplastic materials on the basis of polyethyleneTerephthalate. In 11th International Forum for Students and Young Researchers, (p. 62). Dnipropetrovsk, Ukraine: Natsionalnyi hirnychyi universytet. [Google Scholar]
  37. Sudakova, D.A. (2017). O vozmozhnosti primeneniya bytovykh otkhodov v kachestve tamponazhnogo termoplastichnogo materiala. In Molod: nauka ta innovatsii (pp. 34-35). Dnipropetrovsk, Ukraine: Natsionalnyi hirnychyi universytet. [Google Scholar]
  38. Sudakova, D.A. (2017). Mekhanicheskie svoystva tamponazhnogo termoplastichnogo materiala na osnove polietilentereftalata. Visti Donetskoho Hirnychoho Instytutu, (2), 107-116. [Google Scholar]
  39. Kuzin, Yu. L., Sudakova, D.A., & Luk’yanenko, M.V. (2017). Rezul’taty issledovaniy mekhanicheskikh svoystv tamponazhnogo termoplastichnogo kompozitsionnogo materiala na osnove polietilentereftalata. In Forum Hirnykiv (pp. 242-247). Dnipro, Ukraine: Natsionalnyi hirnychyi universytet. [Google Scholar]
  40. Sudakova, D.A. (2018). Rezul’taty stendovykh issledovaniy termomekhanicheskoy tekhnologii izolyatsii pogloshchayushchikh gorizontov tamponazhnimi termoplastichnymi kompozitsionnymi materialami. Zbirnyk naukovykh prats Natsionalnjho hirnychoho universytetu, (54), 285-298. [Google Scholar]
  41. Кozhevnikov, A.A., Dreus, A.J., Lysenko, K.Ye., & Sudakov, A.K. (2013). Research of heat transfer in cryogenic gravel filter at his transporting on barrel of drillhole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 49-54. [Google Scholar]
  42. Dreus, A., Kozhevnikov, A., Lysenko, K., & Sudakov, A. (2016). Investigation of heating of the drilling bits and definition of the energy efficient drilling modes. Eastern-European Journal of Enterprise Technologies. Technologies, 3(7(81)), 41-46. https://doi.org/10.15587/1729-4061.2016.71995 [CrossRef] [Google Scholar]
  43. Ziborov, K.A., Protsiv, V.V., Blokhin, S.Ye., & Fedoriachenko, S.O. (2014) Applicability of computer simulation while designing mechanical systems of mining rolling stock. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 55-59. [Google Scholar]
  44. Kuzin, J., Mostinets, O., Sudakova, D., & Isakova, M. (2017). Isolation technology for swallowing zones by thermoplastic materials on the basis of polyethyleneTerephthalate. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1(157), 34-39. [Google Scholar]
  45. Sudakov, A., Dreus, A., Sudakova, D., & Khamininch, O. (2018). The study of melting process of the new plugging material at thermomechanical isolation technology of permeable horizons of mine opening. E3S Web of Conferences, (60), 1-10. https://doi.org/10.1051/e3sconf/20186000027 [Google Scholar]
  46. Sudakov, A., Dreus, A., Ratov, B., & Delikesheva, D. (2018). Theoretical bases of isolation technology for swallowing horizons using thermoplastic materials. News of the national academy of sciences of the republic of Kazakhstan, 2(428), 72-80. [Google Scholar]
  47. Sudakov A.К. Khomenko O.Ye., Isakova M. L., & Sudakova, D.A. (2016). Concept of numerical experiment of isolation of absorptive horizons by thermoplastic materials. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(155), 12-16. [Google Scholar]
  48. Grydzhuk, J., Chudyk, I., Velychkovych, A., & Andrusyak, A. (2019). Analytical estimation of inertial properties of the curved rotating section in a drill string. Vostochno-Evropeyskiy Zhurnal Korporativnykh Tekhnologiy, 1(7-97), 6-14. [Google Scholar]
  49. Vytyaz, O., Chudyk, I., & Mykhailiuk, V. (2015). Study of the effects of drilling string eccentricity in the borehole on the quality of its cleaning. Novye razrabotki v gornom dele 2015: teoreticheskie i prakticheskie resheniya razrabotki poleznykh iskopaemykh, (1), 591-595. [Google Scholar]
  50. Protsiv, V., Ziborov, K., & Fedoriachenko, S. (2013). On formation of kinematical and dynamical parameters of output elements of the mine vehicles in transient motion. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 65-70. [Google Scholar]
  51. Dreus, A.J., Sudakov, O.K., Kozhevnikov, A.A., & Vahalin, J.M. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3(153), 5-9. [Google Scholar]
  52. Khomenko, O.Ye., Sudakov, A.K., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(158), 34-43. [Google Scholar]
  53. Kozhevnykov, A.O., Dreus, A.Yu., Baochang, Liu, & Sudakov, A.K. (2018). Drilling fluid circulation rate infuence on the contact temperature during borehole drilling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1(163), 35-43. [CrossRef] [Google Scholar]
  54. Sudakova, D.A. (2017). Netraditsionnaya tekhnologiya bor’by s pogloshcheniem burovykh rastvorov v skvazhinakh. Visti Donetskoho Hirnychoho Instytutu, (1), 227-233. [Google Scholar]
  55. Kuzin, Yu. L., & Sudakova, D.A. (2017). Termomekhanichniy sposib tamponuvannya proniknikh gorizontiv burovikh sverdlovin. In Porodorazrushayushchiy i metalloobrabatyvayushchiy instrument – tekhnika i tekhnologiya ego izgotovleniya i primeneniya (pp. 98-102). Truskavets, Ukraine: Institut sverkhtverdykh materialov. [Google Scholar]
  56. Rifert, V.G., Sereda, V.V. (2015). Condensation inside smooth horizontal tubes: Part 1. Survey of the methods of heat-exchange prediction. Thermal Science, 19(5), 1769-1789. [CrossRef] [Google Scholar]
  57. Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.