Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01034
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/201912301034
Published online 22 October 2019
  1. Pivnyak, G.G., Sakhno, V.P., Kravets, V.V., & Bas, K. M. (2019). Method for determining high-speed vehicle contact forces of the ground transport. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 55-61. https://doi.org/10.29202/nvngu/2019-1/8 [CrossRef] [Google Scholar]
  2. Zabolotny, K., & Panchenko, E. (2010). Definition of rating loading in spires of multilayer winding of rubberrope cable. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 223-229. https://doi.org/10.1201/b11329-38 [Google Scholar]
  3. Taran, I.A. (2012). Interrelation of circular transfer ratio of double-split transmissions with regulation characteristic in case of planetary gear output. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 75-85. [Google Scholar]
  4. Taran, I., & Bondarenko, A. (2017). Conceptual approach to select parameters of hydrostatic and mechanical transmissions for wheel tractors designed for agrucultural opeations. Archives of Transport, 41(1), 89-100. https://doi.org/10.5604/01.3001.0009.7389 [CrossRef] [Google Scholar]
  5. Ilin, S.R., Samusya, V.I., Kolosov, D.L., Ilina, I.S., & Ilina, S.S. (2018). Risk-forming dynamic processes in units of mine hoists of vertical shafts. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 64-71. https://doi.org/10.29202/nvngu/2018-5/10 [Google Scholar]
  6. Taran, I., & Klymenko, I. (2013). Transfer ratio of double-split transmissions in case of planetary gear input. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66. [Google Scholar]
  7. Franchuk, V.P., Ziborov, K.A., Krivda, V.V., & Fedoriachenko, S.O. (2018). Influence of thermophysical processes on the friction properties of wheel – rail pair in the contact area. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 46-52. https://doi.org/10.29202/nvngu/2018-2/7 [CrossRef] [Google Scholar]
  8. SOU 10.1.001.85790.007 (2006). Transport shakhtnyy lokomotyvnyy. Perevezennya lyudey i vantazhiv v vyrobkakh z ukhylom koliyi vid 0,005 do 0,050. Kyiv: Ministerstvo vuhilnoi promyslovosti Ukrainy. [Google Scholar]
  9. Lee, N.-J., & Kang, C.-G. (2016). Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle. Vehicle System Dynamics, 54(10), 1491-1510. https://doi.org/10.1080/00423114.2016.1213864 [CrossRef] [Google Scholar]
  10. Wanve, S, Malode, A. & Ghonmode, N. (2017). An analysis for improving performance of train brake pad by using CAD and CAE software. International Research Journal of Engineering and Technology, (4), 1174-1175. [Google Scholar]
  11. Galardi, E., & Meli, E. & Nocciolini, D. (2015). Galardi, E., Meli, E., Nocciolini, D., Pugi, L., & Rindi, A. (2015). Development of efficient models of Magnetic Braking Systems of railway vehicles. International Journal of Rail Transportation, 3(2), 97-118. https://doi.org/10.1080/23248378.2015.1015219 [CrossRef] [Google Scholar]
  12. Protsiv, V.V. (2011). Nauchnoe obosnovanie novykh tekhnicheskikh resheniy po sovershenstvovaniyu tormoznoy sistemy shakhtnogo sharnirno-sochlenennogo lokomotiva. PhD Thesis. Dnipropetrovsk, Ukraine: NGU. [Google Scholar]
  13. Husain, A. (2013). Dynamic Braking Control for Accurate Train Braking Distance Estimation under Different Operating Condtions. PhD Thisis. Blacksburg. USA: Polytechnic Institute and State University. [Google Scholar]
  14. Sharma, R.C., Dhinga, M., & Pathak, R.K. (2015). Braking Systems in Railway Vehicles. International Journal of Engineering & Technology (IJERT), 4(1), 206-211. [Google Scholar]
  15. Kitanov, S., & Podol’skii, A. (2008). Analysis of Eddy-Current and Magnetic Rail Brakes for High-Speed Trains. The Open Transportation Journal, 2(1), 19-28. https://doi.org/10.2174/1874447800802010019 [CrossRef] [Google Scholar]
  16. Liudvinavičius, L., & Lingaitis, L. (2007). Electrodynamic braking in high speed rail transport. Transport, 22(3), 178-186. https://doi.org/10.1080/16484142.2007.9638122 [CrossRef] [Google Scholar]
  17. Tran, M.T., & Keng Ang, K. (2016). High-speed trains subject to abrupt braking. Vehicle System Dynamics, 54(12), 1715-1735. https://doi.org/10.1080/00423114.2016.1232837 [CrossRef] [Google Scholar]
  18. Yang, Y., Xiong, L., Liu, W., Gao, K., & Huang, Z. (2018). An Energy-Based Nonlinear Pressure Observer for Fast and Precise Braking Force Control of the ECP Brake. International Journal of Precision Engineering and Manufacturing, 19(10), 1437-1445. https://doi.org/10.1007/s12541-018-0170-4 [CrossRef] [Google Scholar]
  19. Piechowiak, T. (2010). Verification of pneumatic railway brake models. Vehicle System Dynamics, (48), 283-299. [CrossRef] [Google Scholar]
  20. Ma, J., Zhang, B., Huang, X., Fang, Y., & Cao, W. (2011). Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains. Journal of Zhejiang University-SCIENCE A, 12(12), 936-944. https://doi.org/10.1631/jzus.a11gt002 [CrossRef] [Google Scholar]
  21. Novytskyi, O.V., Taran, I.O., & Protsiv, V.V. (2005). Device for increasing the load on the axles of a rail vehicle. Patent No. 7B61C, Ukraine. [Google Scholar]
  22. Protsiv, V.V., Novytskyi, O.V. & Samoilov, A.I. (2012). Perevahy mahnitoreikovoho dovantazhuvacha nad reikovym halmom u shakhtnomu lokomotyvi. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 79-84. [Google Scholar]
  23. Otrosh, Y., Kovalov, A., Semkiv, O., Rudeshko, I., & Diven, V. (2018). Methodology remaining lifetime determination of the building structures. MATEC Web of Conferences, (230), 02023. https://doi.org/10.1051/matecconf/201823002023 [CrossRef] [EDP Sciences] [Google Scholar]
  24. Oprea, R.A., Cruceanu, C., & Spiroiu, M.A. (2013). Alternative friction models for braking train dynamics. Vehicle System Dynamics, 51(3), 460-480. https://doi.org/10.1080/00423114.2012.744459 [CrossRef] [Google Scholar]
  25. Ursulyak, L.V., & Shvets, A.O. (2017). Improvement of mathematical models for estimation of train dynamics. Nauka ta Progres Transportu, 6(72), 70-77. https://doi.org/10.15802/stp2017/118002 [Google Scholar]
  26. Protsiv, V.V., & Monya, A.G. (2003). Eksperimental’noe opredelenie kharakteristik stsepleniya shakhtnogo lokomotiva v rezhime tormozheniya. Metallurgicheskaya i Gornorudnaya Promyshlennost’, (8), 95-97. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.