Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01038
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/201912301038
Published online 22 October 2019
  1. Pysmennyi, S., Brovko, D., Shwager, N., Kasatkina, I., Paraniuk, D., & Serdiuk, O. (2018). Development of complex structure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field. Eastern-European Journal of Enterprise Technologies, 5(1-95), 33-45. https://doi.org/10.15587/1729-4061.2018.142483. [Google Scholar]
  2. Stupnik, N.I., Kalinichenko, V.A., Kolosov, V.A., Pismenniy, S.V., & Fedko, M.B. (2014). Testing complex-structural magnetite quartzite deposits chamber system design theme. Metallurgical and mining industry, (2), 89-93. [Google Scholar]
  3. Stupnik, N.I., Fedko, M.B. Pismenniy, S.V. & Kolosov, V.A. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise skhidhzk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21-25. [Google Scholar]
  4. Morkun, V., & Tron, V. (2014). Ore preparation energy-efficient automated control multi-criteria formation with considering of ecological and economic factors. Metallurgical and Mining Industry, (5), 8-10. [Google Scholar]
  5. Morkun, V., Morkun, N., Pikilnyak, A. (2015) Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry, (2), 35-38. [Google Scholar]
  6. Morkun, V., Morkun, N., & Tron, V. (2015). Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric uncertainty. Metallurgical and Mining Industry, (5), 7-11. [Google Scholar]
  7. Kupin, A. (2014). Application of neurocontrol principles and classification optimization in conditions of sophisticated technological processes of beneficiation complexes, Metallurgical and Mining Industry, (6), 16-24. [Google Scholar]
  8. Morkun, V., & Tron, V. (2014). Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, (6), 4-7. [Google Scholar]
  9. Morkun, V., Tron, V., & Goncharov, S. (2015). Automation of the ore varieties recognition process in the technological process streams based on the dynamic effects of high-energy ultrasound. Metallurgical and Mining Industry, (2), 31-34. [Google Scholar]
  10. Lutsenko, I., Koval, S., Oksanych, I., Serdiuk, O., & Kolomits, H. (2018). Development of structural-parametric optimization method in systems with continuous feeding of technological products. Eastern-European Journal of Enterprise Technologies, 4(2(94)), 55-62. https://doi.org/10.15587/1729-4061.2018.136609 [CrossRef] [Google Scholar]
  11. Morkun, V., & Tcvirkun, S. (2014). Investigation of methods of fuzzy clustering for determining ore types, Metallurgical and Mining Industry, (5), 11-14. [Google Scholar]
  12. Morkun, V., Morkun, N., & Pikilnyak, A. (2015). The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics, (56), 340-343. https://doi.org/110.1016/j.ultras.2014.08.022 [Google Scholar]
  13. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Ultrasonic facilities for the ground materials characteristics control, Metallurgical and Mining Industry, (2), 31-35. [Google Scholar]
  14. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Simulation of high-energy ultrasound propagation in heterogeneous medium using k-space method, Metallurgical and Mining Industry, (3), 23-27. [Google Scholar]
  15. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Simulation of the Lamb waves propagation on the plate which contacts with gas containing iron ore pulp in Waveform Revealer toolbox, Metallurgical and Mining Industry, (5), 16-19. [Google Scholar]
  16. Sinchuk, O., Sinchuk, I., Kozakevych, I., Fedotov, V., Serebrenikov, V., Lokhman, N., Beridze, T., Boiko, S., Pyrozhenko, A., & Yalova, A. (2018). Development of the functional model to control the levels of electricity consumption by underground ironore enterprises. Eastern-European Journal of Enterprise Technologies, 6(3(96)), 20-27. https://doi.org/10.15587/1729-4061.2018.148606 [CrossRef] [Google Scholar]
  17. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Ultrasonic phased array parameters determination for the gas bubble size distribution control formation in the iron ore flotation, Metallurgical and Mining Industry, (3), 28-31. [Google Scholar]
  18. Morkun, V., Morkun, N., Pikilnyak, A. (2014). The gas bubble size distribution control formation in the flotation process, Metallurgical and Mining Industry, (4), 42-45. [Google Scholar]
  19. Golik, V., Komashchenko, V., & Morkun, V. (2015). Geomechanical terms of use of the mill tailings for preparation, Metallurgical and Mining Industry, (4), 321-324. [Google Scholar]
  20. Golik, V., Komashchenko, V., Morkun, V., & Burdzieva, O. (2015). Metal deposits combined development experience, Metallurgical and Mining Industry, (6), 591-594. [Google Scholar]
  21. Golik, V., Mitsik, M., Morkun, V., Morkun, N., & Tron, V. (2019). Transportation of concentration and leaching tailings in underground mining of metal deposits. Mining of Mineral Deposits, 13(2), 111-120. https://doi.org/10.33271/mining13.02.111 [CrossRef] [Google Scholar]
  22. Naidoo, M. A., Olivier, L. E., & Craig, I. K. (2013). Combined neural network and particle filter state estimation with application to a run-of-mine ore mill. IFAC Proceedings Volumes, 46(32), 397-402. https://doi.org/10.3182/20131218-3-in-2045.00103 [CrossRef] [Google Scholar]
  23. Hadizadeh, M., Farzanegan, A., & Noaparast, M. (2018). A plant-scale validated MATLAB-based fuzzy expert system to control SAG mill circuits. Journal of Process Control, (70), 1-11. https://doi.org/10.1016/j.jprocont.2018.08.003 [Google Scholar]
  24. Aguila-Camacho, N., Le Roux, J.D., Duarte-Mermoud, M.A., & Orchard, M.E. (2017). Control of a grinding mill circuit using fractional order controllers. Journal of Process Control, (53), 80-94. https://doi.org/10.1016/j.jprocont.2017.02.012 [Google Scholar]
  25. Sage, A.P., & White, I.Ch. (1982). Optimalnoe upravlenie sistemami. Moskva: Radio i svyaz’. [Google Scholar]
  26. Sage, A.P., & Melsa J.L. (1966). Identifikatsiya sistem upravleniya. Moskva: Nauka. [Google Scholar]
  27. Lee, R. (1966). Optimalnye otsenki, opredelenie kharakteristik i upravlenie. Moskva: Nauka. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.