Open Access
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
Article Number 01025
Number of page(s) 5
Section Energy Systems and Complexes
Published online 25 October 2019
  1. N. Ming Chang, H. Anderson, Apparatus and method for laying underwater pipelines United States Patent 3616651, (1971) [Google Scholar]
  2. M. Jegousse, Method and apparatus for assembling and laying underwater pipeline United States Patent 4068490, (1978) [Google Scholar]
  3. J. Lamy, Laying of underwater pipelines United States Patent 4183697, (1980) [Google Scholar]
  4. M. Shamsuddoha, M. M. Islam, T. Aravinthan, A. Manalo., L. Kin-tak, Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs Composite Structures 100, 40–54 (2013) [Google Scholar]
  5. Z. Zhang, B. Shi, Y. Guo., L. Yang, Numerical investigation on critical length of impermeable plate below underwater pipeline under steady current Science China Technological Sciences 56, 1232–1240 (2013) [Google Scholar]
  6. Croll J., A simplified model of upheaval thermal buckling of subsea pipelines Thin-Walled Structures 29, 59–78 (1997) [CrossRef] [Google Scholar]
  7. N. Bouchonneau, V. Sauvant-Moynot, D. Choqueuse, F. Grosjean, E. Poncet, D. Perreux, Experimental testing and modelling of an industrial insulated pipeline for deep sea application Journal of Petroleum Science and Engineering 73, 1–12 (2010) [CrossRef] [Google Scholar]
  8. O. Vestrum, M. Kristoffersen, M. Polanco-Loria, H. Ilstad, M. Langseth, T. Børvik, Quasi-static and dynamic indentation of offshore pipelines with and without multi-layer polymeric coating Marine Structures 62, 60–76 (2018) [Google Scholar]
  9. M. Wilmott, J. Highams, R. Ross, A. Kopystinski, Coating and thermal insulation of subsea or buried pipelines Journal of Protective Coatings & Linings 17, 47–54 (2000) [Google Scholar]
  10. D. Janoff, N. McKie, J. Davalath, Prediction of Cool Down Times and Designing of Insulation for Subsea Production Equipment Offshore Technology Conference (2004) [Google Scholar]
  11. N. Bouchonneau, V. Moynot, F. Grosjean, D. Choqueuse, E. Poncet, D. Perreux, Thermal Insulation Material for Subsea Pipelines: Benefits of Instrumented Full-Scale Testing To Predict the Long-Term Thermomechanical Behaviour Offshore Technology Conference (2007) [Google Scholar]
  12. J. Yang, M. Lourenço, S. Estefen, Thermal insulation of subsea pipelines for different materials International Journal of Pressure Vessels and Piping 168, 100–109 (2018) [CrossRef] [Google Scholar]
  13. A. Nikolaev, Designer’s Handbook. Heating network design (Moscow: Stroiizdat) 361 (1965) [Google Scholar]
  14. R. Shchekin, S. Korenevsky, G. Bem, F. Skorokhodko, E. Chechik, G. Sobolevsky, V. Melnik, O. Korenevskaya, Handbook of heating and ventilation. Book 1. Heating and Heat Supply (Kiev: Budivelnik) 416 (1976) [Google Scholar]
  15. V. Manuk, Y. Kaplinski, E. Hig, A. Manuk, V. Ilin, Adjustment and operation of heat networks (Moscow: Stroiizdat) 432 (1982) [Google Scholar]
  16. E. Avdolimov, A. Shalnov, Water heating networks (Moscow: Stroiizdat) 288 (1984) [Google Scholar]
  17. N. Gromov, et al. Water heating networks. Design Reference Guide, ed N K Gromov (Moscow: Energoatomizdat) 376 (1988) [Google Scholar]
  18. E. Sokolov, Central heating and heating network (Moscow: Moscow Power Engineering Institute) 472 (2001) [Google Scholar]
  19. U. Varfolomeev, O. Kokorin, Heating and heating networks (Moscow: INFRA-M) 480 (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.