Open Access
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
Article Number 01051
Number of page(s) 6
Section Energy Systems and Complexes
Published online 25 October 2019
  1. L. C. Ajjabi, L. Chouba, Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. Journal of Environmental Management, 90, 3485–489 (2009) [CrossRef] [PubMed] [Google Scholar]
  2. V. Javanbakht, S. A. Alavi, H. Zilouei, Mechanisms of heavy metal removal using microorganisms as biosorbent, Water Science & Technology 69 (9), 1775–1787 (2014) [CrossRef] [Google Scholar]
  3. Li. Mengling, et al. Algae based sorbents for removal of gallium from semiconductor manufacturing wastewater. Clean Technologies and Environmental Policy. 20, 899–907 (2018) [Google Scholar]
  4. A.H. Sulaymon, et al. (2013) Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ Sci Pollut Res 20 (5), 3011–23. [CrossRef] [Google Scholar]
  5. M. Nadeem, M. Shabbir, M.A. Abdullah, Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chem. Eng. 148, 365–70 (2009) [CrossRef] [Google Scholar]
  6. R. Jeyakumar, P. Suresh, and V. Chandrasekaran, Adsorption of lead(II) ions by activated carbons prepared from marine green algae: Equilibrium and kinetics studies. Int. J. of Industrial Chemistry (Springer) 5, 10 (2014) [CrossRef] [Google Scholar]
  7. P. Shekinah, K. Kadirvelu, P. Kanmani, P. Senthilkumar, V. Subburam Adsorption of lead(II) from aqueous solution by activated carbon prepared from Eichhornia //Journal of Chemical Technology & Biotechnology. 77 (4), 458-464 [Google Scholar]
  8. N.A. Politaeva, V.V. Slugin, E.A. Taranovskaya, M.A. Soloviev, A.M. Zakharevich, Granulated sorption materials for waste waters purufucation from zink ions (Zn2+) Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Khimiya i Khimicheskaya 60 (7), 85–90 (2017) [CrossRef] [Google Scholar]
  9. L.N. Ol’shanskaya, N.A. Sobgaida, Yu.A. Tarushkina, A.V. Stoyanov, Effect of a magnetic field on extraction of heavy metals from waste water with duckweed Chemical and Petroleum Engineering-44 (7-8), 475–479 (2008) [CrossRef] [Google Scholar]
  10. T. A. Davis, B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae// Water Research. 37 (18), November, 4311–4330 (2003) [CrossRef] [PubMed] [Google Scholar]
  11. R. Tasrina, T. Choudhury, M. N. Acher, S. B. Amin, Quraishil and A. I. Mustafa Removal of Arsenic (III) from Groundwater by Adsorption onto Duckweed (Lemna minor)//International Research Journal of Pure &Applied Chemistry 6 (3), 120-127, (2015) [CrossRef] [Google Scholar]
  12. C. Yacou, et al. Chemical structure investigation of tropical Turbinaria turbinata seaweeds and its derived carbon sorbents applied for the removal of hexavalent chromium in water //Algae esearch 34, 25–36 (2018) [Google Scholar]
  13. S. Daliry, A. Hallajisani, J. M. Roshandeh, et al. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management. 3 (2), 217–230 (2017) [Google Scholar]
  14. M.C. Franco, M. F. Buffing, M. Janssen Et Al Performance of Chlorella sorokiniana under simulated extreme winter conditions // Journal of Applied Phycology DOI 10.1007/s10811-011-9687-y. (2011) [Google Scholar]
  15. S. Negi, A. N. Barry, N. Friedland et al. Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana [Text] Journal of Applied Phycology. DOI 10.1007/s10811-015-0652-z. (2015) [Google Scholar]
  16. I.M. Abdulagatov, A.B. Alkhasov, G.D. Dogeev, N.R. Tumalaev, R. Aliev, G.B. Badavov, A.M. Aliyev, A.S. Salikhova, Microalgae and their technological applications in energy and environmental protection // South of Russia: ecology, development. 13 (1), 66-183 DOI: 10.18470/1992-1098-2018-1-166-183 (2018) [CrossRef] [Google Scholar]
  17. A. Concas, V. Malavasib, M. Pisua, et al. Experiments and Modeling of the Growth of C. sorokiniana in Lab Batch and BIOCOIL Photobioreactors for Lipid production [Text] Chemical engineering transactions. 57, 1-6(2017) [Google Scholar]
  18. N.A. Politaeva, T.A. Kuznetsova, Y.A. Smyatskaya, E.V. Trukhina, I. Atamanyuk, Energy Production from Chlorella Algae Biomass Under St. Petersburg Climatic Conditions, Chemical and Petroleum Engineering 53 (11-12), 801–805 (2018) [CrossRef] [Google Scholar]
  19. N. Politaeva, T. Kuznetsova, Y. Smyatskaya, I. Atamaniuk, E. Trukhina, Chlorella Microalga Biomass Cultivation for Obtaining Energy in Climatic Conditions of St. Petersburg, Advances in Intelligent Systems and Computing, 692, 555–562 (2018) [CrossRef] [Google Scholar]
  20. N. Politaeva, T. Kuznetsova, Y. Smyatskaya, E. Trukhina, F. Ovchinnikov, Impact of various physical exposures on Chlorella Sorokiniana microalgae cultivation International Journal of Applied Engineering Research 12 (21), 11488–11492 (2017) [Google Scholar]
  21. N. Politaeva, Y. Smyatskaya, V. Slugin, A. Toumi, M. Bouabdelli. Effect of laser radiation on the cultivation rate of the microalga Chlorella sorokiniana as a source of biofuel// IOP Conference Series: Earth and Environmental Science. 012001, 115 (2018) [Google Scholar]
  22. E.T. Zuev, Functional drinks: their place in the concept of a healthy diet. Nutrition and Health journal, 90–95 (2004) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.