Open Access
Issue
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
Article Number 05017
Number of page(s) 5
Section Additional papers
DOI https://doi.org/10.1051/e3sconf/201912405017
Published online 10 February 2020
  1. D.A. Sorokin, S.I. Volskiy, Mathematical Model of Three-phase Power Corrector with Improved Efficiency, Electrical Technology Russia, 5, 58–66 (2019) [Google Scholar]
  2. D.A. Sorokin, S.I. Volskiy, Three Phase Converter AC/DC with High Power Factor, Patent of the Russian Federation, N2018126502 (2018) [Google Scholar]
  3. V.I. Meleshin, D.A. Ovchinnikov, Control transistor inverters, 411 (2011) [Google Scholar]
  4. A.F. Souza, D.C. Pereira, F.L. Tofoli, Comparison of Control Techniques Used in Power Factor Correction Rectifiers, IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronic Conference, 1–6 (2015) [Google Scholar]
  5. D.A. Sorokin, S.I. Volskiy, Comparative Analysis of Three-Phase PFC Rectifier, Electronics and electrical equipment of transport (EET), 5, 10–15 (2018) [Google Scholar]
  6. L. Huber, Performance Comparison of Three-Step and Six-Step PWM in Average-Current-Controlled Three-Phase Six-Switch Boost PFC Rectifier, IEEE Transactions on Power Electronics, 31, 7264–7272. [Google Scholar]
  7. J.W. Kolar, T. Friedli, The Essence of Three-Phase PFC Rectifier Systems, IEEE Transactions on Power Electronics, 28(1), 176–198 (2013) [Google Scholar]
  8. L. Wang, H. Wu, W.H. Tang, Z.Y. Yu, W. Ma, CCM-DCM Average Current Control for Both Continuous and Discontinuous Conduction Modes Boost PFC Converters, 2017 IEEE Electrical Power and Energy Conference (EPEC), 1–6 (2017) [Google Scholar]
  9. X. Du, L. Zhou, H.M. Tai, Average Current Control of a Series-Type Single-Phase PFC With Hybrid Modulation, IEEE Transactions on Power Electronics, 26(9), 2381–2385 (2011) [Google Scholar]
  10. R. Etz, T. Patarau, D. Petreus, Comparison between Digital Average Current Mode Control and Digital One Cycle Control for a Bridgeless PFC Boost Converter, 2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging (SIITME), 211–215 (2012) [CrossRef] [Google Scholar]
  11. H. Ma, Y. Xie, Z. Shi, Improved direct power control for Vienna-type rectifiers based on sliding mode control, IET Power Electronics, 1–8 (2015) [Google Scholar]
  12. H. Ma, Y. Xie, B. Sun, L. Mo, Modelling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach, Journal of Power Electronics, 15(1), 190–201 (2015) [CrossRef] [Google Scholar]
  13. L. Yacoubi, K.A. Haddad, L.A. Dessaint, F. Fnaiech, Linear and Nonlinear Control Techniques for a Three-Phase Tree-level NPC Boost Rectifier, IEEE Transactions on Industrial Electronics, 53(6), 1908–1918 (2006) [CrossRef] [Google Scholar]
  14. M. Yongqing, L. Zheng, S. Yanmin, Y. Ting, Study on Mathematical Model and Lyapunov-Based Control for Three-Phase Four-Wire Three-Level NPC Voltage Source Rectifier, IEEE ISIE 2005, 669–674 (2005) [Google Scholar]
  15. Z. Dandan, W. Jiuhe, S. Dongjin, Passivity Based Control of Three-Phase Three-Switch Vienna Rectifier, ICMMITA 2015, 1127–1132 (2015) [Google Scholar]
  16. G. S. Zinoviev, Power electronics, 668 (2015) [Google Scholar]
  17. Yu.K. Rozanov, M.V. Rabchynski, A.A. Kvasnyuk, Power electronics, 632 (2007) [Google Scholar]
  18. D. Sorokin, S. Volskiy, Y. Skorokhod, Development of the control system for three-phase power factor corrector, PCIM2019, 1813–1819 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.