Open Access
Issue
E3S Web Conf.
Volume 125, 2019
The 4th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2019)
Article Number 07019
Number of page(s) 9
Section Waste Management
DOI https://doi.org/10.1051/e3sconf/201912507019
Published online 28 October 2019
  1. C. Bellard, C. Leclerc, F. Courchamp, Potential Impact of Sea Level Rise on French Islands Worldwide, J. Nat. Conserv., 5, pp. 75–86, (2013). [Google Scholar]
  2. H. S. Hansen, Modelling the Future Coastal Zone Urban Development as Implied by The IPCC SRES and Assessing The Impact from Sea Level Rise, J. Landsc. Urban Plan., 98, no. 3, pp. 141–149, (2010). [CrossRef] [Google Scholar]
  3. I. Buchori, A. Pramitasari, A. Sugiri, M. Maryono, Y. Basuki, A. W. Sejati, Adaptation to Coastal Flooding and Inundation: Mitigations and Migration Pattern in Semarang City, Indonesia, J. Ocean Coast. Manag., 163, pp. 445–455, (2018). [CrossRef] [Google Scholar]
  4. G. McGranahan, D. Balk, B. Anderson, The Rising Tide: Assessing The Risks of Climate Change and Human Settlements in Low Elevation Coastal Zones, J. Environ. Urban., 19, no. 1, pp. 17–37, (2007). [CrossRef] [Google Scholar]
  5. I. Buchori, A. Sugiri, M. Mussadun, D. Wadley, Y. Liu, A. Pramitasari, I. T. D. Pamungkas., A Predictive Model to Assess Spatial Planning in Addressing Hydro-Meteorological Hazards: A Case Study of Semarang City, Indonesia, Int. J. Disaster Risk Reduct., 27, pp. 415–426, (2018). [Google Scholar]
  6. B. T. Widyantoro, Karakteristik Pasang Surut Laut di Indonesia, J. Ilm. Geomatika, 20, no. 1, pp. 65–72, (2015). [Google Scholar]
  7. Fadilah, Suripin, P. S. Dwi, Menentukan Tipe Pasang Surut dan Muka Air Rencana Perairan Laut Kabupaten Bengkulu Tengah Menggunakan Metode Admiralty, J. Maspari., vol. 6 (1), pp. 1–12, (2014). [Google Scholar]
  8. I. A. Cahyaningtias, Model Spasial dan Temporal Genangan Banjir Rob Menggunakan Sistem Informasi Geografis : Studi Kasus di Pesisir Pekalongan, Departement of Marine Science, Brawijaya University, (2018). [Google Scholar]
  9. Maryono, Evaluation of Disaster Resilience on Waste Management in Developing Countries, Disertasi Doktor, Departement of Urban and Enviromental Engineering, Khusyu University, (2015). [Google Scholar]
  10. F. He, J. Zhuang, Balancing Pre-Disaster Preparedness and Post-Disaster Relief, Eur. J. Oper. Res., 252, no. 1, pp. 246–256, (2016). [Google Scholar]
  11. Y. Wakabayashi, T. Peii, T. Tabata, T. Saeki, Life Cycle Assessment and Life Cycle Costs for Pre-Disaster Waste Management Systems, J. Waste Manag., 68, pp. 688–700, (2017). [CrossRef] [Google Scholar]
  12. T. Tabata, H. Morita, A. Onishi, ‘What is The Quantity of Consumer Goods Stocked in a Japanese Household? Estimating Potential Disaster Waste Generation During Floods’, J. Resour. Conserv. Recycl., vol. 133, pp. 86–98, (2018). [CrossRef] [Google Scholar]
  13. H. Nakayama, T. Shimaoka, K. Omine, Maryono, P. Patsaraporn, O. Siriratpiriya, ‘Solid Waste Management in Bangkok at 2011 Thailand Floods’, J. Disaster Res., vol. 3, no. 3, pp. 356–346, (2013). [Google Scholar]
  14. T. Sutari, Sampah Muara Angke Mencapai 50 Ton, CNN Indonesia, 2018. [Online]. Available: https://www.cnnindonesia.com/nasional/20180319130722-20-284139/sampah-muara-angke-mencapai-50-ton (Accessed : May 16, 2019.). [Google Scholar]
  15. UN-OCHA, Disaster Waste Management Guidelines, Edition 2, Switzerland: Joint UNEP/OCHA Environment Unit (2013). [Google Scholar]
  16. Maryono, H. Nakayama, T. Shimaoka, Identification of Factors Affecting Stakeholders’ Intentions to Promote Preparedness in Disaster Waste Management: A Structural Equation Modeling Approach, J. Mem. Fac. Eng. Kyushu Univ., 74, no. 3, pp. 79–98, (2015). [Google Scholar]
  17. Geospasial Informayion Agency, DEMNAS: Seamless Digital Elevation Model (DEM) dan Batimetri Nasional, 2011. [Online]. Available: http://tides.big.go.id/DEMNAS/ (Accessed: February 19, 2019). [Google Scholar]
  18. H. Latief, M. R. Putri, F. Hanifah, I. N. Afifah, M. Fadli, D., Ismoyo, Coastal Hazard Assessment in Northern Part of Jakarta, J. Procedia Eng., 212, pp. 1279–1286, (2018). [CrossRef] [Google Scholar]
  19. J. R. Landis, G. G. Koch, The Measurement of Observer Agreement for Categorical Data, Biometrics, 33, no. 1, pp. 159–174, (1977). [Google Scholar]
  20. R. Albano, A. Sole, J. Adamowski, L. Mancusi, A GIS-based Model to Estimate Flood Consequences and The Degree of Accessibility and Operability of Strategic Emergency Response Structures in Urban Areas, Nat. Hazards Earth Syst. Sci., 14, no. 11, pp. 2847–2865, (2014). [CrossRef] [Google Scholar]
  21. T. Tabata, Y. Wakabayashi, P. Tsai, T. Saeki, Environmental and Economic Evaluation of Pre-Disaster Plans for Disaster Waste Management: Case Study of Minami-Ise, Japan, J. Waste Manag., 61, pp. 386–396, (2017). [CrossRef] [Google Scholar]
  22. N. E. Wahyuningsih, T. Joko, P. N. Prabamurti, Buku Ajar Persampahan. Semarang: UPT Undip Press, (2014). [Google Scholar]
  23. Bappeda Kota Semarang, RTRW Kota Semarang 2011-2031. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.