Open Access
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 01011
Number of page(s) 6
Section Heat and Mass Transfer in Energy Systems
Published online 08 November 2019
  1. D. B. Tuckerman, R.F.W. Pease, High performance heat sinking for VLSI, EEE Electron Device Letters, 2(5), 126–129 (1981). [Google Scholar]
  2. S.G., Kandlikar, M.R., King, Heat transfer and fluid flow in mini-channels and micro-channels, S.G.K.G.L.C.R. King (Ed.) (2006). [Google Scholar]
  3. A.C. Kheirabadi, D. Groulx, Cooling of server electronics: a design review of existing technology, Appl. Therm. Engg., 105, 622–638 (2016). [CrossRef] [Google Scholar]
  4. T.K. Nandi, H. Chattopadhyay, Numerical investigation of simultaneously developing flow in wavy microchannel under pulsating inlet flow condition, Int. Commun. Heat Mass Transf., 47, 27–31 (2013). [Google Scholar]
  5. A.C. Benim, M.. Cagan, D. Gunes, Computational analysis of transient heat transfer in turbulent pipe flow, Int Jour of Therm Sc, 43(8), 725–732 (2004). [Google Scholar]
  6. C. Leng, X.D. Wang, T.H. Wang, An improved design of double-layered micro-channel heat sink with truncated top channels, Appl. Therm. Engg., 79, 54–62 (2015). [CrossRef] [Google Scholar]
  7. S.B. Choi R.R. Baron, R.O. Warrington, Fluid flow and heat transfer in micro-tubes, ASME, DSC 40, 89–93 (1991). [Google Scholar]
  8. T. M. Harms, M. J. Kazmierczak, F. M. Gerner Developing convective heat transfer in deep rectangular micro channels, Int Jour of Heat and Fluid Flow, 149–157 (1999). [CrossRef] [Google Scholar]
  9. G. Hetsroni, A. Mosyak, E. Pogrebnyak, L. P. Yarin, Heat transfer in microchannel comparison of experiments with theory and numerical results, Int. J. Heat Mass Trans, 48, 5580–5601 (2005). [CrossRef] [Google Scholar]
  10. J. Judy, D. Maynes, B.W. Webb, Characterization of frictional pressure drop for liquid flows through microc-hannels, Int Jour of Heat and Mass Trans, 45(17), 3477–3489 (2002). [CrossRef] [Google Scholar]
  11. D. Liu, S.V. Garimella, Investigation of liquid flow in micro-channels, AIAA Jour of Thermophysics and Heat Trans, 18, 65–72 (2004). [CrossRef] [Google Scholar]
  12. W. Qu, I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase microchannel heat sink, Int Jour of Heat and Mass Trans, 45, 2549–2565 (2002). [CrossRef] [Google Scholar]
  13. A. Gogineni, CFD Modelling Of Rectangular Microchannel With Increase In Heat Flux And Effect On Nusselt Number, Proceedings of the 6th Annual GRASP Symposium, Wichita State University (2010). [Google Scholar]
  14. T. Icoz, Y. Jaluria, Design optimisation of size and geometry of vortex promoter in a two dimensional channel, J. Heat Trans, 128, 1081–1092 (2006). [CrossRef] [Google Scholar]
  15. H. A. Mohammed, P. Gunnasegaran, N.H. Shuais, Numerical simulation of heat transfer enhancement in wavy microchannel heat sink, Int. Commun. Heat Mass Transf., 38, 63–68 (2011). [Google Scholar]
  16. M. Meis, F. Varas, A Velazquez, J. M. Vega Heat transfer enhancement in micro-channels caused by vortex promoters, Int Jour of Heat and Mass trans, 53, 29–40 (2009). [CrossRef] [Google Scholar]
  17. L., Goldstein, E. Sparrow, Heat/mass transfer characteristics for flow in a corrugated wall channel, ASME Trans J Heat Tran, 99, 187–195 (1977). [Google Scholar]
  18. T. A. Rush, T.A. Newell, A.M. Jacobi, An experimental study of flow and heat transfer in sinusoidal wavy passages, Int J Heat Mass Tran, 42 (9), 1541–1553 (1999). [Google Scholar]
  19. H. M. Metwally, M.R. Manglik, Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels, Int J Heat Mass Tran, 47 (10), 2283–2292 (2004). [Google Scholar]
  20. A.F. Al-Neama, N. Kapur, J. Summers, H. M. Thompson, An experimental and numerical investigation of the use of liquid flow in serpentine microchannels for microelectronics cooling, Appl. Therm Eng., 116, 709–723 (2017). [Google Scholar]
  21. S. Patankar, C. Liu, E. Sparrow, Fully developed flow and heat transfer in ducts having stream wise-periodic variations of crosssectional area, ASME J Heat Tran, 99 (2), 180–186 (1977). [Google Scholar]
  22. H. Ghaedamini, P.S. Lee, C. J. Teo, Developing forced convection in converging-diverging microchannels, Int J Heat Mass Tran, 65, 491–499 (2013). [Google Scholar]
  23. G. Xie, J. Liu, Y. Liu, B. Sunden, W. Zhang, Comparative study of thermal performance of longitudinal and transversal-wavy microchannel heat sinks for electronic cooling, J Electron Package, 135 (2), 21008 (2013). [Google Scholar]
  24. J. Masliyah, K. Nandakumar, Steady laminar flow through twisted pipes: fluid flow in square tubes, J Heat Tran, 103 (4), 785–790 (1981). [Google Scholar]
  25. S. Bhattacharyya, H. Chattopadhyay, A. Swami, Md. Kamal Uddin, Convective Heat Transfer Enhancement and Entropy Generation of Laminar Flow of Water Through a Wavy Channel, Int Jour of heat and Tech, Vol. 34 (4), 727–733 (2016). [CrossRef] [Google Scholar]
  26. S. Bhattacharyya, H. Chattopadhyay, A. C. Benim, Numerical Investigation on Heat Transfer in a Circular Tube with Inclined Ribs, Progress in Comp Fl Dyn, An International Journal, Vol. 17, no. 6, 390–396. (2017). [Google Scholar]
  27. S. Bhattacharyya, H. Chattopadhyay, A. Guin, A. C. Benim, Investigation of inclined tabulators for heat transfer enhancement in a solar air heater, Heat Tran Engg, Vol. 40 no. 17–18, 1451–1460 (2019). [Google Scholar]
  28. S. Bhattacharyya, A. C. Benim, Himadri Chattopadhyay, A. Banerjee, Experimental Investigation of the Heat Transfer Performance of a Corrugated Tube with Spring tape inserts. Exp. Heat Transfer Vol. 32, no. 5, 411–425. (2019). [Google Scholar]
  29. S. Bhattacharyya, Experimental study on effect of heat transfer enhancement of heat exchanger tube inserted with short length spring tapes, Iran J Sci Technol Trans Mech Engg, Online Published. (2018). [Google Scholar]
  30. S. Bhattacharyya, A. C. Benim, H. Chattopadhyay, A. Banerjee, Experimental and numerical analysis of forced convection in a twisted tube, Jour of Therm Sc ( Accepted) (2019). [Google Scholar]
  31. R. Biswas, M. C. Das, S. Bhattacharyya, A. S. Kuar, S. Mitra, Selection of Nd:YAG laser beam micro-drilling parameters using multicriteria decision making methods, Optics & Laser Tech, 119, 105596. (2019). [CrossRef] [Google Scholar]
  32. S. Bhattacharyya, A. I. Bashir, K. Dey, R. Sarkar, Effect of Novel Short Length Wavy Tape Turbulators on Fluid Flow and Heat Transfer: Experimental Study, Exp Heat Transf Online Published, (2019). [Google Scholar]
  33. S. Bhattacharyya, The effects of short length and full length swirl generators on heat transfer and flow fields in a solar air heater tube, Jour of Therm Analysis and Calorimetry (Online Published), (2019). [Google Scholar]
  34. S. Bhattacharyya, H. Chattopadhyay, S. K. Saha, Numerical Study on heat transfer enhancement of laminar flow through a circular tube with artificial rib roughness, Journal of Ref Air cond Heating and vent, 1 (3), 14–19 (2014). [Google Scholar]
  35. S. Bhattacharyya, S. Das, A Sarkar, A Guin, A. Mullick, Numerical simulation of flow and heat transfer around hexagonal cylinder, Int Jour of Heat and Tech, 35 (2), 360–363 2016). [Google Scholar]
  36. A. C. Benim, A finite element solution of radiative heat transfer in participating media utilizing the moment method, Comp Methods in App Mech and Engg, 67(1), 1–14 (1988). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.