Open Access
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 01012
Number of page(s) 4
Section Heat and Mass Transfer in Energy Systems
Published online 08 November 2019
  1. D.G. Ebling, A. Krumm, B. Pfeiffelmann, J. Gottschald, J. Bruchmann, A.C. Benim, M. Adam, R. Labs, R.R. Herbertz, A. Stunz, “Development of a system for thermoelectric heat recovery from stationary industrial processes”, Journal of Electronic Materials, 45(7), pp.3433–3439 (2016) [CrossRef] [Google Scholar]
  2. M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, Th. Kolb, “Renewable power-to-gas: a technological and economic review”, Renewable Energy, 85, pp.1371–1390 (2016) [Google Scholar]
  3. S. De, A.K. Agarwal, V.S. Moholkar, B. Thallada (Eds.), Coal and Biomass Gasification, (Springer, Berlin, Germany, 2018) [CrossRef] [Google Scholar]
  4. IAEA, “Hydrogen Production Using Nuclear” Energy, IAEA Nuclear Energy Series No. NP-T-4.2, Internat . Atomic Energy Agency, Vienna (2013) [Google Scholar]
  5. A.C. Benim, K.J. Syed, Flashback Mechanisms in Lean Premixed Gas Turbine Combustion, (Academic Press, Cambridge, MA, USA, 2014) [Google Scholar]
  6. B. Lewis, G. von Elbe, Combustion, Flames and Explosions of Gases, 3rd ed., (Academic Press, Orlando, USA 1987) [Google Scholar]
  7. H. Philips, “On the transmission of an explosion through a gap smaller than the quenching distance”, Proceedings Royal Society, 7, pp.129–135 (1963) [Google Scholar]
  8. S.Y. Yang, S.H. Chung, H.J. Kim, “Effect of pressure on quenching meshes in transmitting hydrogen in combustion”, Nuclear Engineering and Design, 224, pp.199–206 (2003) [CrossRef] [Google Scholar]
  9. S.W. Hong, J.H. Song, “Flame-quenching model of the quenching mesh for H2-Air mixtures”, Journal of Nuclear Science and Techn., 50, pp.1213–1219 (2013) [CrossRef] [Google Scholar]
  10. Z.B. Song, L.J. Wei, Z.Z. Wu, “Effects of heat losses on flame shape and quenching of premixed flames in narrow-channels”, Combustion Science and Technology, 180, pp.264–278 (2008) [CrossRef] [Google Scholar]
  11. S. Kudriakov, E. Studer, C. Bin, “Numerical simulation of the laminar hydrogen flame in the presence of a quenching mesh”, International Journal of Hydrogen Energy, 36, pp.2555–2559 (2011) [Google Scholar]
  12. Z. Liu, N. I. Kim, “An assembled annular stepwise diverging tube for the measurement of laminar burning velocity and quenching distance”, Combustion and Flame, 161, pp. 1499–1506 (2014) [Google Scholar]
  13. Y. Jung, M.J. Lee, N. I. Kim, “Direct prediction of laminar burning velocity and quenching distance of hydrogen-air flames using an annular stepwise diverging tube (ASDT)”, Combustion and Flame, 164, pp.397–399 (2016) [Google Scholar]
  14. H. Y. Kim, N. I. Kim, “Precise measurement if the length-scale effects on the flame propagation velocity using a compact annular stepwise- diverging-tube (ASDT)”, Combustion and Flame, 191, pp.210–212 (2018) [Google Scholar]
  15. S.R. Turns, An Introduction to Combustion, 3rd ed., (McGrawHill, New York, USA, 2012) [Google Scholar]
  16. R.B. Bird, W.E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd ed., (Wiley, New York, USA, 2002) [Google Scholar]
  17. A. C. Benim, “A finite element solution of radiative heat transfer in participating media utilizing the moment method”, Computer Methods in Applied Mechanics and Engineering, 67(1), pp.1–14 (1988) [Google Scholar]
  18. A.C. Benim, M.P. Escudier, A. Nahavandi, A.K. Nickson, K.J. Syed, F. Joos, “Experimental and numerical investigation of isothermal flow in an idealized swirl combustor”, International Journal of Numerical Methods for Heat & Fluid Flow, 20(3), pp.348–370 (2010) [CrossRef] [Google Scholar]
  19. A.C. Benim, S. Iqbal . W. Meier, F. Joos, A. Wiedermann, “Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor”, Applied Thermal Engineering, 110, pp. 202–212 (2017) [Google Scholar]
  20. ANSYS® FLUENT, [Google Scholar]
  21. [Google Scholar]
  22. R.J. Kee, F.M. Rupley, J.A. Miller, “The Chemkin thermodynamic data base”, Sandia Report, SAND87-8215B (1991) [Google Scholar]
  23. R.A. Shevla, “Estimated viscosities and thermal conductivities of gases at high temperatures”, NASA Technical Report R-132 (1962) [Google Scholar]
  24. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th ed., (McGraw- Hill, New York, USA, 1987) [Google Scholar]
  25. N.M. Marinov, C.K. Westbrook, W.J. Pitz, “Detailed and global chemical kinetics model for hydrogen”, Report No. UCRL-JC-120677, Lawrence Livermore National Laboratory, CA. [Google Scholar]
  26. [Google Scholar]
  27. J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, “A comprehensive modeling study of hydrogen oxidation”, International Journal of Chemical Kinetics, 36, pp.566–575 (2004) [Google Scholar]
  28. M.O. Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C.K. Westbrook, “A comprehensive modeling study of hydrogen oxidation”, International Journal of Chemical Kinetics, 36, pp.603–622 (2004) [Google Scholar]
  29. S.C. Taylor, “Burning velocity and the influence of flame stretch”, Ph.D. Thesis, Univ. Leeds (1991) [Google Scholar]
  30. K.T. Aung, M.I. Hassan, GM. Faeth, “Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure”, Combust. Flame, 109, pp.1–24 (1997) [Google Scholar]
  31. B. Pfeiffelmann, A.C. Benim, “Numerical study of the quenching of a laminar premixed hydrogen flame”, MATEC Web of Conferences, 240, 01031 (2018) [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.