Open Access
Issue |
E3S Web Conf.
Volume 130, 2019
The 1st International Conference on Automotive, Manufacturing, and Mechanical Engineering (IC-AMME 2018)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/201913001013 | |
Published online | 15 November 2019 |
- P. Spalart. Reflections on RANS modelling. In: Progress in Hybrid RANS-LES Modelling, NNFM 111. S.-H. Peng et al. (Eds). Berlin Heidelberg: Springer (2009). p. 7–24. https://link.springer.com/chapter/10.1007/978-3-642-14168-3_2 [Google Scholar]
- P.A. Durbin, Annu. Rev. Fluid Mech., 50:77–103 (2018). https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-122316-045020 [Google Scholar]
- P.R. Spalart, W.-H. Jou, M. Strelets, S.R. Allmaras. Comments on the feasibility of LES for wings, and on a hybrid RANS/ LES approach. Proceeding of the 1st AFOSR International Conference on DNS/LES. C. Liu, Z. Liu (Eds). Columbus: Greyden Press (1997). p. 137–147. https://www.cobaltcfd.com/pdfs/DES97.pdf [Google Scholar]
- F.R. Menter, M. Kuntz. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. Symposium on the aerodynamics of heavy vehicles: trucks, buses, and trains. R. McCallen, F. Browand, J. Ross (Eds). Berlin Heidelberg New York: Springer (2004). p. 339–352. https://link.springer.com/chapter/10.1007/978-3-540-44419-0_30 [Google Scholar]
- J.C. Kok, H.S. Dol, B. Oskam, H. van der Ven. Extra large eddy simulation of massively separated flows. 42nd Aerospace Sciences Meeting and Exhibit, (Reno, USA, 2004). AIAA Paper 2004–264. https://arc.aiaa.org/doi/10.2514/6.2004-264 [Google Scholar]
- S. Girimaji, K. Abdol-Hamid. Partially averaged navier stokes model for turbulence: Implementation and validation. 43rd AIAA Aerospace Sciences Meeting and Exhibit, (Reno, USA, 2005). AIAA Paper 2005–502. https://arc.aiaa.org/doi/10.2514/6.2005-502 [Google Scholar]
- P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin, Theoret. Comput. Fluid Dyn., 20:181–195 (2006). https://link.springer.com/article/10.1007/s00162-006-0015-0 [Google Scholar]
- D. Cokljat, D. Caradi, G. Link, R. Lechner, F.R. Menter. Embedded LES methodology for general-purpose CFD solvers. 6th International Symposium on Turbulence and Shear Flow Phenomena, (Seoul, Korea, 2009). https://cfd.spbstu.ru/agarbaruk/doc/2009_Cokljat-et-al._Embedded-LES-Methodology-for-General-Purpose-CFD-Solvers.pdf [Google Scholar]
- F.R. Menter, Y. Egorov. Flow Turbulence Combust., 85, 1:113–138 (2010). https://link.springer.com/article/10.1007/s10494-010-9264-5 [Google Scholar]
- M.S. Gritskevich, A.V. Garbaruk, J. Schutze, F.R. Menter, Flow Turbulence Combust., 88, 3:431–449 (2012). https://link.springer.com/article/10.1007/s10494-011-9378-4 [CrossRef] [Google Scholar]
- S. Deck, Theoret. Comput. Fluid Dyn., 26:523–550 (2012). https://link.springer.com/article/10.1007/s00162-011-0240-z [CrossRef] [Google Scholar]
- A. Islam, B. Thornber, Comput. Fluids, 167:292–312 (2018). https://www.sciencedirect.com/science/article/abs/pii/S004579301830135X [CrossRef] [Google Scholar]
- ANSYS 17.2. ANSYS CFX-Solver Theory Guide. Release 17.2. Pennsylvania: ANSYS, Inc. Canonsburg (2016). https://support.ansys.com/portal/site/AnsysCustomerPortal/template.fss?file=%2Fprod_docu%2F17.2%2FANSYS+CFX-Solver+Theory+Guide.pdf [Google Scholar]
- M. Breuer, B. Jaffrézic, K. Arora, Theoret. Comput. Fluid Dyn., 22, 3–4: 157–187 (2008). https://link.springer.com/article/10.1007/s00162-007-0067-9 [CrossRef] [Google Scholar]
- M.L. Shur, P.R. Spalart, M.K. Strelets, A.K. Travin, Int. J. Heat Fluid Flow, 29, 6: 1638–1649 (2008). https://www.sciencedirect.com/science/article/pii/S0142727X08001203 [CrossRef] [Google Scholar]
- S. Deck. Zonal Detached Eddy Simulation, ZDES, ONERA. In:. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. DESider – A European Effort on Hybrid RANS–xLES Modelling, 103. R. Haase, M. Braza, A. Revell (Eds). Berlin Heidelberg: Springer (2009). p. 41–43. https://link.springer.com/book/10.1007/978-3-540-92773-0 [Google Scholar]
- N. Chauvet, S. Deck, L. Jacquin, AIAA J., 45, 10:2458–2473 (2007). https://arc.aiaa.org/doi/10.2514/1.28562 [Google Scholar]
- Menter, F.R. Stress-Blended Eddy Simulation: a new paradigm in hybrid RANS-LES modelling. In: Hoarau Y., Peng SH., Schwamborn D., Revell A. (eds) Progress in Hybrid RANS-LES Modelling. HRLM 2016. Notes onNumericalFluidMechanics and Multidisciplinary Design, vol 137. Springer, Cham.6th HLRM Symposium, (France, 2016). https://link.springer.com/chapter/10.1007/978-3-319-70031-1_3 [Google Scholar]
- J.W. Deardorff, J. Fluid Mech., 41, 2:453–480 (1970). https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/numerical-study-of-threedimensional-turbulent-channel-flow-at-large-reynolds-numbers/D84769F4A3443E4C87E8878303890999 [CrossRef] [Google Scholar]
- P. Wang, H. Ma, Y. Liu, J. Fluids Eng., 140, 8:1–13 (2018). https://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleID=2672690 [Google Scholar]
- C. Xia, X. Shan, Z. Yang, J. Fluids Eng., 139, 5:1–12 (2017). http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleID=2599262 [Google Scholar]
- S. Ravelli, G. Barigozi, J. Heat Transfer, 140, 9:1–14 (2018). http://heattransfer.asmedigitalcollection.asme.org/article.aspx?articleID=2677510 [CrossRef] [Google Scholar]
- C. Meraner, T. Li, M. Ditaranto, T. Løvås, Int. J. Hydrogen Energy, 43, 14:7155–7168 (2018). https://www.sciencedirect.com/science/article/pii/S0360319918304798 [CrossRef] [Google Scholar]
- M. Straka, A. Fiebach, T. Eichler, C. Koglin, Flow Measurement Instrum., 60:124–133 (2018). https://www.sciencedirect.com/science/article/pii/S0955598617303461 [CrossRef] [Google Scholar]
- P. Ekman, R. Gardhagen, T. Virdung, M. Karlsson, SAE Int. J. Commer. Veh., 9, 2:217–223 (2016). https://saemobilus.sae.org/content/2016-01-8022/ [CrossRef] [Google Scholar]
- Pratomo H.P.S., Schäfer M. Assessment of hybrid turbulence modeling approaches for fluid-structure interaction. 4th International Conference on Computational Engineering (Darmstadt, Germany, 2017). http://www.graduate-school-ce.de/index.php?eID=tx_nawsecuredl&u=0&file=fileadmin/template/media/files/icce2017/icce2017_boa.pdf&t=1562020986&hash=706896b22cc8eb05c7242a837e2d863f032a0a04 [Google Scholar]
- Buscariolo F.F., Magazoni F.C., Maruyama F.K., Alves J.C.L., Marcwolf, Volpe L.J.D. Analysis of turbulence models applied to CFD drag simulations of small hatchback vehicle. 25th SAE Brasil International Congress and Display, (Säo Paulo, Brasil, 2016). SAE Technical Paper Series 2016-36-0201 E. https://saemobilus.sae.org/content/2016-36-0201 [Google Scholar]
- G. De Nayer, A. Kalmbach, M. Breuer, S. Sicklinger, R. Wüchner, Comput. Fluids, 99:18–43 (2014). https://www.sciencedirect.com/science/article/abs/pii/S0045793014001583 [Google Scholar]
- De Nayer, G., Kalmbach A., Breuer, M. Fluid-structure interaction in turbulent flow past cylinder/plate configuration I (First swiveling mode). [Online] from http://www.kbwiki.ercoftac.org/w/index.php/Abstr:UFR_2-13 (2016) [Acessed on 2 May 2016] [Google Scholar]
- M. Garcia-Villalba, N. Li, W. Rodi, M.A. Leschziner, J. Fluid Mech., 627:55–96 (2009). https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/largeeddy-simulation-of-separated-flow-over-a-threedimensional-axisymmetric-hill/63B081F00DDBFD1CA8D3291DF6D5BA75 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.