Open Access
Issue |
E3S Web Conf.
Volume 130, 2019
The 1st International Conference on Automotive, Manufacturing, and Mechanical Engineering (IC-AMME 2018)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/e3sconf/201913001014 | |
Published online | 15 November 2019 |
- B. Hübner, E. Walhorn, D. Dinkler, Comput. Methods. Appl. Mech. Engrg., 193, 23–26:2087–2104 (2004). https://www.sciencedirect.com/science/article/pii/S0045782504000696 [CrossRef] [Google Scholar]
- G.D. Nayer, M. Breuer, A. Kalmbach. ECCOMAS 2012: 6th European congress on computational methods in applied sciences and engineering. Austria: ECCOMAS (2012). p. 163–210. https://eccomas2012.conf.tuwien.ac.at/fileadmin/mediapool-eccomas2012/Diverse/Programme/ECCOMAS2012_GeneralInfo_Programme_RoomMaps2.pdf. [Google Scholar]
- W.G. Dettmer. Finite element modelling of fluid flow with moving free surfaces and interfaces including fluid-solid interaction. [Ph.D. Thesis]. School of Engineering, University of Wales Swansea (2004). p. 145–167. http://ukacm.org/wp-content/uploads/phdThesis/2004_WDettmer.pdf [Google Scholar]
- J. Lee, D. You. ASME 2012 Fluids Engineering Summer Meeting-FEDSM2012-72302, (Rio Grande, Puerto Rico 2012), p. 1497–1506. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1720030 [Google Scholar]
- K. Andreas. Experimental investigations on vortex-induced fluid-structure interaction benchmarks and corresponding RANS predictions. [Dissertation Dr.-Ing.]. Helmut-Schmidt Universität/ Universität der Bundeswehr, Hamburg, Germany (2015). http://edoc.sub.uni-hamburg.de/haw/volltexte/2015/3109/ [Google Scholar]
- R. Mittal, G. Iaccarino, Annu. Rev. Fluid Mech., 37:239–261 (2005). https://www.annualreviews.org/doi/full/10.1146/annurev.fluid.37.061903.175743 [Google Scholar]
- R. Mittal, H. Dong, M. Bozkurttas, F.M. Najjar, A. Vargas, A. von Loebbecke, J. Comput. Phys., 227, 10:4825–4852 (2008). https://www.sciencedirect.com/science/article/pii/S0021999108000235 [CrossRef] [PubMed] [Google Scholar]
- G. Hou, J. Wang, A. Layton, Commun. Comput. Phys., 12, 2:337–377 (2012). https://www.cambridge.org/core/journals/communications-in-computational-physics/article/numerical-methods-for-fluidstructure-interaction-a-review/359AE654882EAFB08CAAA862AC7B05AC [Google Scholar]
- R.L. Campbell, Fluid–structure interaction and inverse design simulations for flexible turbomachinery. [Ph.D. Thesis] The Pennsylvania State University, University Park, the United States of America (2010). p. 14–61. https://etda.libraries.psu.edu/files/final_submissions/5215 [Google Scholar]
- S. Kneißl, D.C. Sternel, M. Schäfer. Parallel algorithm for solution-adaptive grid movement in the context of fluid structure interaction. In: Recent trends in computational engineering-CE2014. Springer-lecture notes in computational science and engineering, 105. M. Mehl, M. Bischoff, M. Schäfer (Eds). Cham: Springer (2015). p. 85–98. https://link.springer.com/chapter/10.1007/978-3-319-22997-3_5 [Google Scholar]
- D. Yu. Numerical simulation of mechanical and thermal fluid-structure interaction in labyrinth seals. [Dissertation Dr.-Ing.] Technische Universität Darmstadt, Darmstadt, Germany (2010). p. 27–64. https://core.ac.uk/download/pdf/11680843.pdf [Google Scholar]
- A. Awais. On the simulation of turbulent fluid-structure interaction. [Ph.D. Thesis] Technische Universität Darmstadt, Darmstadt, Germany (2017). p. 50–93. http://tuprints.ulb.tu-darmstadt.de/5990/ [Google Scholar]
- C. Förster, W.A. Wall, E. Ramm. The artificial added mass effect in sequential staggered fluid-structure interaction algorithms. European Conference on Computational Fluids Dynamics, (ECCOMAS CFD, Netherland 2006). p. 1–20. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.617.3996&rep=rep1&type=pdf [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.