Open Access
Issue |
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
|
|
---|---|---|
Article Number | 01029 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/201913701029 | |
Published online | 16 December 2019 |
- Ding Z., Hou H., Yu G., Hu E., Duan L., Zhao, Performance analysis of a wind-solar hybrid power generation system, Energy Conversion and Management, Vol. 181, pp. 223-234, (2019). [Google Scholar]
- Ma Z., Wang S., Li S., Shi Y., Long-term coordination for hydro-thermal-wind-solar hybrid energy system of provincial power grid, Energy Procedia, Vol. 158, pp. 6231-6235 (2019). [Google Scholar]
- Salomone F., Giglio E., Ferrero D., Santarelli M., Pirone R., Bensaid S., Techno-economic modelling of a Power-to-Gas system based on SOE electrolysis and CO2 methanation in a RES-based electric grid, Chemical Engineering Journal, (2019), in press. [Google Scholar]
- Balat M., Balat M., Political, economic and environmental impacts of biomass-based hydrogen, International Journal of Hydrogen Energy, Vol. 34, Issue 9, pp. 3589-3603, (2009). [Google Scholar]
- Konieczny A., Mondal K., Wiltowski T., Dydo P., Catalyst development for thermocatalytic decomposition of methane to hydrogen, International Journal of Hydrogen Energy, Vol. 33, Issue 1, pp. 264-272, (2008). [Google Scholar]
- Talawar M.B., Sivabalan R., Mukundan T., Muthurajan H., Sikder A.K., Gandhe B.R., Subhananda Rao A., Environmentally compatible next generation green energetic materials (GEMs), Journal of Hazardous Materials, Vol. 161, Issues 2-3, pp. 587-607, (2009). [Google Scholar]
- Yan Y., Fang Q., Blum L., Lehnert W., Performance and degradation of an SOE stack with different cell components, Electrochimica Acta, Vol. 258, pp. 1254-1261, (2017). [Google Scholar]
- Bo Y., Wenqiang Z., Jingming X., Jing C., Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET, International Journal of Hydrogen Energy, Vol. 35, Issue 7, pp. 2829-2835, (2010). [Google Scholar]
- Mingyi L., Bo Y., Jingming X., Jing C., Thermodynamic analysis of the efficiency of high- temperature steam electrolysis system for hydrogen production, Journal of Power Sources, Vol. 177, Issue 2, pp. 493-499, (2008). [Google Scholar]
- Li Q., Zheng Y., Guan W., Jin L., Xu C., Wang W.G., Achieving high-efficiency hydrogen production using planar solid-oxide electrolysis stacks, International Journal of Hydrogen Energy, Vol. 39, Issue 21, pp. 10833-10842, (2014). [Google Scholar]
- Mocoteguy P., Brisse A., A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells, International Journal of Hydrogen Energy, Vol. 38, Issue 36, pp. 15887-15902 (2013). [Google Scholar]
- Fang Q., Blum L., Menzler N.H., Performance and Degradation of Solid Oxide Electrolysis Cells in Stack, Journal of The Electrochemical Society, Vol. 162, Issue 8, pp. F907-F912, (2015). [Google Scholar]
- Graves C., Ebbesen S.D., Mogensen M., Lackner K.S., Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy, Renewable and Sustainable Energy Reviews, Vol. 15, Issue 1, pp. 1-23, (2011). [CrossRef] [Google Scholar]
- Gruber M., Wienbrecht P., Biffar L., Harth S., Trimis D., Brabandt J., Posdziech O., Blumentritt R., Power-to-Gas through thermal integration of high-temperature steam electrolysis and carbon dioxide methanation - Experimental results, Fuel Processing Technology, Vol. 181, pp. 67-74, (2018). [CrossRef] [Google Scholar]
- Nielsen S., Skov I.R., Investment screening model for spatial deployment of power-to-gas plants on a national scale - A Danish case, International Journal of Hydrogen Energy, Vol. 44, Issue 19, pp. 9544-9557, (2018). [Google Scholar]
- Yan X.L., Hino R., Nuclear hydrogen production handbook. Green Chemistry and Chemical Engineering, CRC Press, 1st edition, (2016). [Google Scholar]
- Ni M., Leung M.K.H, Leung D.Y.C, Technological development of hydrogen production by solid oxide electrolyser cell (SOE), International Journal of Hydrogen Energy, Vol. 33, Issue 9, pp. 2337-2354, (2008). [Google Scholar]
- Navasa M., Yuan J., Sunden B., Computational fluid dynamics approach for performance evaluation of a solid oxide electrolysis cell for hydrogen production, Applied Energy, Vol. 137, pp. 867-876, (2015). [Google Scholar]
- Udagawa J., Aguiar P., Brandon N.P., Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, Vol. 180, Issue 1, pp. 46-55, (2008). [Google Scholar]
- Petipas F., Brisse A., Bouallou C., Model-based behaviour of a high temperature electrolyser system operated at various loads, Journal of Power Sources, Vol. 239, pp. 584-595, (2013). [Google Scholar]
- Santhanam S., Heddrich M.P., Riedel M., Friedrich K.A., Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage, Energy, Vol. 141, pp. 202-214, (2017). [CrossRef] [Google Scholar]
- Virkar A.V., Mechanism of oxygen electrode delamination in solid oxide electrolyser cells. International, Journal of Hydrogen Energy, Vol. 35, Issue 18, pp. 9527-9563, (2010). [CrossRef] [Google Scholar]
- Sun X., Chen M., Liu Y.L., Hendriksen P.V., Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production, ECS Transactions, Vol. 68, Issue 1, pp. 3359-3369, (2015). [Google Scholar]
- Sun X., Chen M., Liu Y.L., Hjalmarsson P., Ebbesen S.D., Jensen S.H., Mogensen M.B., Hendriksen P.V., Durability of Solid Oxide Electrolysis Cells for Syngas Production, Journal of the Electrochemical Society, Vol. 160, Issue 9, pp. F1074-F1080, (2013). [Google Scholar]
- Tietz F., Sebold D., Brisse A., Schefold J., Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation, Journal of Power Sources, Vol. 223, pp. 129-135, (2013). [Google Scholar]
- Chen M., Sun X., Chatzichristodoulou C., Koch S., Hendriksen P.V., Thermoneutral Operation of Solid Oxide Electrolysis Cells in Potentiostatic Mode, ECS Transactions, Vol. 78, Issue 1, pp. 3077-3088, (2017). [Google Scholar]
- Hoerlein M.P., Schiller G., Tietz F., Friedrich K.A., Systematic Parameter Study on the Influence of Humidification and Current Density on SOEC Degradation, ECS Transactions, Vol. 68, Issue 1, pp. 3553-3561, (2015). [Google Scholar]
- Njodzefon J.C., Klotz D., Kromp A., Weber A., Ivers-Tiffee E., Electrochemical Modeling of the Current-Voltage Characteristics of an SOFC in Fuel Cell and Electrolyser Operation Modes, Journal of The Electrochemical Society, Vol. 160, Issue 4, pp. F313-F323, (2013). [Google Scholar]
- Petipas F., Grisse A., Bouallou C., Model-based behaviour of a high temperature electrolyser system operated at various loads, Journal of Power Sources, Vol. 239, pp. 584-595, (2013). [Google Scholar]
- Iora P., Chiesa P., High efficiency process for the production of pure oxygen based on solid oxide fuel cell-solid oxide electrolyser technology, Journal of Power Sources, Vol. 109, Issue 2, pp. 408-419, (2009). [Google Scholar]
- Kupecki J., Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME, International Journal of Hydrogen Energy, Vol. 40, Issue 35, pp. 12009-12022, (2015). [Google Scholar]
- Kupecki J., et al. Dynamic numerical analysis of cross-, co-, and counter-current flow configurations of a 1 kW-class solid oxide fuel cell stack, International Journal of Hydrogen Energy, Vol. 40, Issue 45, pp. 15834-15844, (2015). [Google Scholar]
- Milewski J., Swirski K., Santarelli M., Leone P., Advanced methods of solid oxide fuel cell modeling, Green Energy Technology, Springer, (2014). [Google Scholar]
- Iora P., Taher M.A., Chiesa P., Brandon N.P., A novel system for the production of pure hydrogen from natural gas based on solid oxide fuel cell-solid oxide electrolyser, International Journal of Hydrogen Energy, Vol. 35, Issue 22, pp. 12680-12687, (2010). [Google Scholar]
- Cai Q., Luna-Ortiz E., Adjiman C.S., Brandon N.P., The Effects of Operating Conditions on the Performance of a Solid Oxide Steam Electrolyser: A Model-Based StudyFuel Cells From Fundamentals to Systems, Vol. 10, Issue 6, pp. 1114-1128, (2010). [Google Scholar]
- Kim J.S., Boardman R.D., Bragg-Sitton S.M., Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems, Applied Energy, Vol. 228, pp. 2090-2110, (2018). [Google Scholar]
- Wang Z., Mori M., Araki T., Steam electrolysis performance of intermediate-temperature solid oxide electrolysis cell and efficiency of hydrogen production system at 300 Nm3 h–1, International Journal of Hydrogen Energy, Vol. 35, Issue 10, pp. 4451-4458 (2010). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.