Open Access
Issue
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
Article Number 01030
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/201913701030
Published online 16 December 2019
  1. OECD/nea, “Technology Roadmap Update for Generation IV Nuclear Energy Systems: Preparing Today for Tomorrow’s Energy Needs” (2014). [Google Scholar]
  2. Alan e. waltar, Todd D.R., and Tsvetkov P.V., Fast Spectrum Reactors. Springer (2013). [Google Scholar]
  3. IAEA, “Liquid Metal Cooled Reactors: Experience in Design and Operation,” Atomic Energy. (IAEATECDOC-1569) (2007); https://doi.org/IAEA-TECDOC-1569. [Google Scholar]
  4. World nuclear news, “US DoE’s Versatile Test Reactor Project”; http://www.world-nuclear-news.org/Articles/US-launches-test-reactor-project. [Google Scholar]
  5. World nuclear association, “Thorium;” https://www.world-nuclear.org/information-library/current-and-future-generation/thorium.aspx. [Google Scholar]
  6. Gyorgy H. and Czifrus S., “The utilization of thorium in Generation IV reactors,” Progress in Nuclear Energy, 93, pp. 306 (2016); https://doi.org/10.1016/j.pnucene.2016.09.007. [Google Scholar]
  7. Gyorgy H. and Czifrus S., “Investigation on the potential use of thorium as fuel for the Sodium- cooled Fast Reactor,” Annals of Nuclear Energy, 103, pp. 238 (2017); https://doi.org/10.1016/j.anucene.2017.01.030. [Google Scholar]
  8. Stauff N. E. et al., “Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes,” pp. 87 (2016). [Google Scholar]
  9. Kim T. K. et al., “Annals of Nuclear Energy Core design studies for a 1000 MW th Advanced Burner Reactor,” Annals of Nuclear Energy, 36 (3), pp. 331, Elsevier Ltd (2009); https://doi.org/10.1016Zj.anucene.2008.12.021. [Google Scholar]
  10. Grandy R., seidensticker c., “Advanced Burner Reactor 1000MWth Reference Concept” (2007). [Google Scholar]
  11. Insulander bjork K., Thorium Fuels for Light Water Reactors Steps towards commercialization (2015). [Google Scholar]
  12. Leppanen J., “PSG2 / Serpent - a Continuous- energy Monte Carlo Reactor Physics Burnup Calculation Code,” pp. 157 (2011). [Google Scholar]
  13. Leppanen J., Development of a new Monte Carlo reactor physics code, in VTT Publications(640) (2007). [Google Scholar]
  14. Leppanen J. et al., “The Serpent Monte Carlo code: Status, development and applications in 2013,” Annals of Nuclear Energy, 82, pp. 142 (2015); https://doi.org/10.1016Zj.anucene.2014.08.024. [Google Scholar]
  15. Paper C. et al., “Evaluation of Large 3600MWth Sodium-Cooled Fast Reactor Neutronic OECD Benchmarks” (2014). [Google Scholar]
  16. Darnowski P. and Mikolajczak A., “Monte Carlo simulations of the 1000 MWth SFR OECD/NEA benchmark with SERPENT code,” AIP Conference Proceedings, 2116 (July), pp. 450067 (2019); https://doi.org/10.1063/1.5114534. [Google Scholar]
  17. Darnowski P., “X-Core Nuclear Engineering Matlab Toolbox,” GitLab Repostory; https://gitlab.com/darczu/x-core. [Google Scholar]
  18. Stanisz P., Cetnar J., and Oettingen M., “Radionuclide neutron source trajectories in the closed nuclear fuel cycle,” Nukleonika, 64 (1), pp. 3 (2019); https://doi.org/10.2478/nuka-2019-0001. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.