Open Access
Issue |
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
|
|
---|---|---|
Article Number | 01031 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/201913701031 | |
Published online | 16 December 2019 |
- Desai, B.G. CO2 emissions—Drivers across time and countries. Curr. Sci., 115, 386–387, (2018). [Google Scholar]
- The International Energy Agency, Global Energy & CO2 Status Report 2018, The latest trends in energy and emissions in 2018, (2018). [Google Scholar]
- Tchapda A.H., Pisupati S.V., A Review of Thermal Co-Conversion of Coal and Biomass/Waste, Energies, 7, 1098–1148, (2014). [Google Scholar]
- Greinert A., Mrówczyńska M., Szefner W., The Use of Waste Biomass from the Wood Industry and Municipal Sources for Energy Production, Sustainability, 11, 3083, (2019). [Google Scholar]
- UNFCCC, United Nations Framework Convention on Climate Change, (2019) [Google Scholar]
- UNSDG, United Nations Sustainable Development Goal report, (2019). [Google Scholar]
- Li Y., Rezgui Y., Zhu H., District heating and cooling optimization and enhancement—towards integration of renewables, storage and smart grid. Renew. Sustain. Energy Rev., 72, 281–294, (2017). [CrossRef] [Google Scholar]
- Pradhana P., Mahajanib S.M., A. Aroraa, Production and utilization of fuel pellets from biomass: A review, Fuel Processing Technology, 181, 215–232, (2018). [CrossRef] [Google Scholar]
- Chen W.H., Peng J., Bi X.T., A state-of-the-art review of biomass torrefaction, densification and applications, Renew. Sust. Energ. Rev., 44, 847–866, (2015). [CrossRef] [Google Scholar]
- Singh R., Krishna B.B., Mishra G., Kumar J., Bhaskar T., Strategies for selection of thermo-chemical processes for the valorisation of biomass, Renew. Energy, 98, 226–237, (2016). [Google Scholar]
- Geng A., Yang H., Chen J., Hong Y., Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation, Forest Policy Econ., 85, 192–200, (2017). [CrossRef] [Google Scholar]
- Zhang J., Liu J., Evrendilek F., Xie W., Kuo J., Zhang X., Buyukada M., Kinetics, thermodynamics, gas evolution and empirical optimization of cattle manure combustion in air and oxy-fuel atmospheres, Appl. Therm. Eng., 149, 119–131, (2019). [Google Scholar]
- Weiland P., Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860, 2010. [CrossRef] [PubMed] [Google Scholar]
- Johansson A.-C., Wiinikka H., Sandström L., Marklund M., Öhrman O.G.W., Narvesjö J., Characterization of pyrolysis products produced from different Nordic biomass types in a cyclone pilot plant, Fuel Process. Technol., 146, 9–19, (2016). [CrossRef] [Google Scholar]
- Mboumboue E., Njomo D., Biomass resources assessment and bioenergy generation for a clean and sustainable development in Cameroon. Biomass Bioenergy, 118, 16–23, (2018). [Google Scholar]
- Johansson LS., Leckner B., Gustavsson L., Cooper D., Tullin C., Potter A., Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos Environ, 38(25):4183–95, (2004). [Google Scholar]
- Obernberger I., Biedermann F., Widmann W., Riedl R., Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy, 12(3):211–24. (1997). [Google Scholar]
- Wierzbicka A., Lillieblad L., Pagels J., Strand M., Gudmundsson A, Gharibi A, et al. Particle emissions from district heating units operating on three commonly used biofuels. Atmos Environ, 39(1):139–50 (2005). [Google Scholar]
- Wiinikka H., Gebart R., Boman C., Bostrom D., Ohman M., Influence of fuel ash composition on high temperature aerosol formation in fixed bed combustion of woody biomass pellets. Fuel, 86(1–2):181–93 (2007). [CrossRef] [Google Scholar]
- Wiinikka H., Gebart R., Experimental investigations of the influence from different operating conditions on the particle emissions from a small-scale pellets combustor. Biomass Bioenergy, 27(6):645–52, (2004). [Google Scholar]
- Brunner T., Obernberger I., Scharler R., Primary measures for low-emission residential wood combustion-Comparison of old with optimised modern systems. Proceedings of 17th European Biomass Conference and Exhibition, Hamburg, Germany, p. 1319–28 (2009). [Google Scholar]
- Obernberger I., Brunner T., Barnthaler G., Chemical properties of solid biofuels–significance and impact. Biomass Bioenergy, 30(11):973–82, (2006). [Google Scholar]
- Diaz-Ramirez M., Sebastian F., Royo J., Rezeau A., Influencing factors on NOX emission level during grate conversion of three pelletized energy crops. Appl Energy, 115:360–73, (2014). [Google Scholar]
- Diaz-Ramirez M., Boman C., Sebastian F., Royo J., Xiong S, Bostrom D., Ash characterization and transformation behavior of the fixed-bed combustion of novel crops: poplar, brassica, and cassava fuels. Energy Fuels, 26(6):3218–29 (2012) [Google Scholar]
- Diaz-Ramirez M., Sebastian F., Royo J., Rezeau A., Combustion requirements for conversion of ash-rich novel energy crops in a 250 kWth multifuel grate fired system. Energy, 46(1):636–43, (2012). [CrossRef] [Google Scholar]
- Diaz-Ramirez M., Frandsen F.J., Glarborg P., Sebastian F., Royo J., Partitioning of K, Cl, S and P during combustion of poplar and brassica energy crops. Fuel, 134:209–19 (2014). [CrossRef] [Google Scholar]
- Khana A.A.,. de Jong W, Jansens P.J., Spliethoff H., Biomass combustion in fluidized bed boilers: Potential problems and remedies, Fuel Processing Technology, Volume 90, Issue 1, 21-50, (2009). [CrossRef] [Google Scholar]
- Kosowska-Golachowska M., Wolski K., Gajewski W., Kijo-Kleczkowska A., Musiał T., Środa K., Spalanie biomasy agro i leśnej w cyrkulacyjnej warstwie fluidalnej, Rynek Energii, 3(124), (2016). [Google Scholar]
- Jenkins B.M., Baxter L.L., Miles T.R. Jr., Miles T.R., Combustion properties of biomass, Fuel Processing Technology, 54 (1–3) 17–46, (1998). [CrossRef] [Google Scholar]
- Faaij A.P.C., Biomass combustion, Encyclopedia of Energy 1 175–191, (2004). [CrossRef] [Google Scholar]
- Demirbas A., Combustion characteristics of different biomass fuels, Progress in Energy and Combustion Science, 30 (2) 219–230, (2004). [Google Scholar]
- Demirbas A., Fuel and combustion properties of bio-wastes, Energy Sources, 27 (5) 451–462, (2005). [CrossRef] [Google Scholar]
- Pełka P., Analysis of a coal particle mass loss burning in flow of inert material. Combust. Flame, 156, 1604, (2009). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.