Open Access
Issue |
E3S Web Conf.
Volume 137, 2019
XIV Research & Development in Power Engineering (RDPE 2019)
|
|
---|---|---|
Article Number | 01034 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/201913701034 | |
Published online | 16 December 2019 |
- E. Klugmann, E. Klugmann-Radziemska: Ogniwa i moduły fotowoltaiczne oraz inne niekonwencjonalne źródła energii, Ekonomia i Środowisko, Białystok (2005) [Google Scholar]
- G. Lobaccaro, S. Croce, C. Lindkvist, M.C. Munari Probst, A. Scognamiglio, J. Dahlberg, M. Lundgren, M. Wall: A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies, Renewable and Sustainable Energy Reviews, Vol. 108, pp. 209-237 (2019) [CrossRef] [Google Scholar]
- W. Gogół, O. Skonieczny, L. Zakrzewski: Niektóre zagadnienia wymiany ciepła w kolektorach energii promieniowania słonecznego, Politechnika Warszawska, Warszawa 1979 [Google Scholar]
- N. Bushra, T. Hartmann: A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends, Renewable and Sustainable Energy Reviews, Vol. 114, 109307 (2019) [CrossRef] [Google Scholar]
- M.E. Ydrissi, H. Ghennioui, E.G. Bennouna, A. Farid: Geometric, optical and thermal analysis for solar parabolic trough concentrator efficiency improvement using the Photogrammetry technique under semi-arid climate, Energy Procedia, vol. 157, p. 1050-1060 (2019) [Google Scholar]
- L. Evangelisti, R. De Lieto Vollaro, F. Asdrubali: Latest advances on solar thermal collectors: A comprehensive review, Renewable and Sustainable Energy Reviews, Vol. 114, 109318 (2019) [Google Scholar]
- N. B. Desai, S. B. Kedare, S. Bandyopadhyay: Optimization of design radiation for concentrating solar thermal power plants without storage, Solar Energy, Vol. 107, pp. 98-112 (2014) [CrossRef] [Google Scholar]
- J. Ruelas, D. Sauceda, J. Vargas, R. García: Thermal and concentration performance for a wide range of available offset dish solar concentrators, Applied Thermal Engineering, Vol. 144, pp. 13-20 (2018) [Google Scholar]
- G. H. Lee: Construction of conical solar concentrator with performance evaluation, Energy Procedia, Vol. 153, pp. 137-142 (2018) [Google Scholar]
- E.T.A. Gomes, N. Fraidenraich, O.C. Vilela, C.A.A. Oliveira, J. M. Gordon: Aplanats and analytic modeling of their optical properties for linear solar concentrators with tubular receivers, Solar Energy, Vol. 191, pp. 697-706 (2019) [CrossRef] [Google Scholar]
- C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V.V. Thalluri, C. Henrist, P. Colson, J. Loicq: Waveguide solar concentrator design with spectrally separated light, Solar Energy, Vol. 157, pp. 1005-1016 (2017) [CrossRef] [Google Scholar]
- G. Wang, Y. Yao, Z. Chen, P. Hu: Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology, Energy, Vol. 166, pp. 256-266 (2019) [CrossRef] [Google Scholar]
- J. Chen, L. Yang, Z. Zhang, J. Wei, J. Yang: Optimization of a uniform solar concentrator with absorbers of different shapes, Solar Energy, Vol. 158, pp. 396-406 (2017) [CrossRef] [Google Scholar]
- P. Selvakumar, P. Somasundaram, P. Thangavel: Performance study on evacuated tube solar collector using Therminol D-12 as heat transfer fluid coupled with parabolic trough, Energy Conversion and Management, Vol. 85, pp. 505-510 (2014) [Google Scholar]
- J. Qin, E. Hu, G. J. Nathan, L. Chen: Concentrating or non-concentrating solar collectors for solar Aided Power Generation?, Energy Conversion and Management, Vol. 152, pp. 281-290 (2017) [Google Scholar]
- M. Sabiha: An experimental study on Evacuated tube solar collector using nanofluids, International Conference on Advances in Science, Engineering, Technology and Natural Resources (ICASETNR-15) Sabah, Malaysia, Vol. 2, pp. 42-49 [Google Scholar]
- M.A. Sharafeldin, G. Gróf, E. Abu-Nada, O. Mahian: Evacuated tube solar collector performance using copper nanofluid: Energy and environmental analysis, Applied Thermal Engineering, Vol. 162, 114205 (2019) [Google Scholar]
- H. Fathabadi: Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate, Renewable Energy, DOI: 10.1016/j.renene.2019.10.008 (2019) [PubMed] [Google Scholar]
- A. García, R. Herrero-Martin, J.P. Solano, J. Pérez-García: The role of insert devices on enhancing heat transfer in a flat-plate solar water collector, Applied Thermal Engineering, Vol. 132, pp. 479-489 (2018) [Google Scholar]
- D. Jin, S. Quan, J. Zuo, S. Xu: Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs, Renewable Energy, Vol. 134, pp. 78-88 (2019) [Google Scholar]
- F. A.S. da Silva, D. J. Dezan, A. V. Pantaleão, L. O. Salviano: Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater, Applied Thermal Engineering, Vol. 158, 113790 (2019) [Google Scholar]
- W. Liu, Z. Yang, B. Zhang, P. Lv: Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow, International Journal of Heat and Mass Transfer, Vol. 115, Part A, pp. 169-179 (2017) [Google Scholar]
- M. Setareh, M. Saffar-Avval, A. Abdullah: Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger, Applied Thermal Engineering, Vol. 159, 113867 (2019) [Google Scholar]
- Therminol® 66 High Performance Highly Stable Heat Transfer Fluid, Solutia Europe S.A./N.V., Louvain-la-Neuve (2016) [Google Scholar]
- C.G. Speziale, S. Sarkar, T.B. Gatski: Modeling the Pressure-Strain Correlation of Turbulence: an Invariant Dynamical Systems Approach, Journal of Fluid Mechanics, Vol. 227, pp. 245-272 (1991) [Google Scholar]
- Bredberg J.: On the Wall Boundary Condition for Turbulence Models, Chalmers University of Technology, Göteborg (2000) [Google Scholar]
- ANSYS CFX-Solver Theory Guide. Release 15.0, ANSYS Inc., Canonsburg (2013) [Google Scholar]
- G.F. Nellis., S.A. Klein: Heat Transfer, Cambridge University Press, New York (2009) [Google Scholar]
- Bartela Ł., Remiorz L., Stanek B., Grzywnowicz K.: Kierunki intensyfikacji przepływu ciepła w absorberze parabolicznego koncentratora promieniowania słonecznego, Konferencja Zarządzanie Energią i Teleinformatyką, Rynek Gazu, Rynek Ciepła, Nałęczów 17-19.06.2019 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.