Open Access
Issue
E3S Web Conf.
Volume 140, 2019
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2019)
Article Number 06012
Number of page(s) 5
Section Fluid Mechanics
DOI https://doi.org/10.1051/e3sconf/201914006012
Published online 18 December 2019
  1. Achenbach E. Total and local heat transfer from a smooth circular cylinder in cross-flow at high Reynolds number / Int. J. Heat Mass Transfer. Vol 18, pp. 1387–1396, 1975. [CrossRef] [Google Scholar]
  2. Bearman P.W. and Harvey J.K. Control of circular cylinder flow by the use of dimples / AIAA Journal Vol. 31, No. 10, 1993, pp. 1753-1756. [CrossRef] [Google Scholar]
  3. Giordano R. Vortex shedding in the near wake of a finite cylinder / Giordano R., Astarita T., Carlomagno G. M. // 14th IntSymp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 07–10 July, 2008. [Google Scholar]
  4. Kaminski D.A., Fu X.D. and Jensen M.K. Numerical and experimental analysis of combined convective and radiative haet transfer in laminar flow over a circular cylinder / Int. J. Heat Mass Transfer. Vol 38, No 17, pp. 3161–3169, 1995. [CrossRef] [Google Scholar]
  5. Nakamura H., Igarashi T. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3000 to 15, 000 / Int. J. of Heat and Fluid Flow 25 (2004) pp. 741-748. [CrossRef] [Google Scholar]
  6. Kaikko, J., Mankonen, A., Vakkilainen, E., Sergeev, V. Core-annulus model development and simulation of a CFB boiler furnace (2017) Energy Procedia, 120, pp. 572-579. [Google Scholar]
  7. Ertan Buyruk Heat transfer and flow structures around circular cylinders in cross-flow // Tr. J. of Engineering and Environmental Science 23 (1999), 299–315. [Google Scholar]
  8. E.R. Ranjith et al. / Procedia Technology 24 (2016) 452–460 [CrossRef] [Google Scholar]
  9. Sparrow EM, Gorman JM, Friend KS & Abraham JP (2013), Flow regime determination for finned heat exchanger surfaces with dim-ples/protrusions. Numerical Heat Transfer, Part A: Applications. 63(4), 245–256. [CrossRef] [Google Scholar]
  10. Parnaudeau, P.; Carlier, J.; Heitz, D.; Lamballais, E. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 2008, 20, 085101. [Google Scholar]
  11. Y. Zhou, H. J. Zhang, and M. Y. Yiu, “The turbulent wake of two side-by-side circular cylinders,” J. Fluids Eng. 0098-2202 458, 303 (2002). [Google Scholar]
  12. P. Sooraj, Majid Hassan Khan, Atul Sharma and Amit Agrawal, Wake analysis and regimes for flow around three side-by-side cylinders, Experimental Thermal and Fluid Science, 10.1016/j.expthermflusci.2019.02.009, (2019). [Google Scholar]
  13. D. Sumner, Two circular cylinders in cross-flow: A review, Journal of Fluids and Structures, 10.1016/j.jfluidstructs.2010.07.001, 26, 6, (849-899), (2010) [Google Scholar]
  14. Yaryshev N.A. [Theoretical basis of measurement of unsteady temperature] Teoreticheskieosnovyizmereniyanestatsionarnykhtemperatur. Energoatomisdat, Leningrad. Deption, 1990, 254 p. (in Russian). [Google Scholar]
  15. Sapozhnikov SZ, Mityakov VY, Mityakov AV (2013), Gradient heat flux measurement fundamentals. St. Petersburg State Polytechnical University, Saint Petersburg (in Russian). [Google Scholar]
  16. Le-Zakharov, Alexander & Krivtsov, Anton & Porubov, A.V.. (2019). Relation between defects and crystalline thermal conduction. Continuum Mechanics and Thermodynamics. 10.1007/s00161-019-00807-w. [Google Scholar]
  17. V Yu Mityakov et al 2017 J. Phys.: Conf. Ser. 891 012095 [CrossRef] [Google Scholar]
  18. Korotkov A, Loboda V, Feldhoff A & Groeneveld D (2017), Simulation of thermoelectric generators and its results experimental verification. IEEE, Signals, Circuits and Systems (ISSCS) International Symposium. [Google Scholar]
  19. Mityakov A, Mityakov V, Sapozhnikov S, Gusakov A, Bashkatov A, Seroshtanov V, Zainullina E & Babich A (2017), Hydrodynamics and heat transfer of yawed circular cylinder. Int. J. Heat Mass Transf. 115, 333-3 [Google Scholar]
  20. Akhmetbekov YK, Bilsky AV, Markovich DM, Maslov AA, Polivanov PA, Tsyryul’nikov IS & Yaroslavtsev MI (2009), Application of “POLIS” PIV system for measurement of velocity fields in a supersonic flow of the wind tunnels. Thermophysics and Aeromechanics 16(3), 325-333. V Yu Mityakov et al 2017 J. Phys.: Conf. Ser. 891 012095 [CrossRef] [Google Scholar]
  21. Gusakov AA, Kosolapov AS, Markovich DM, Mityakov AV, Mityakov VY, Mozhayskiy SA & Nebuchinov AS & Sapozhnikov SZ (2014), Simultaneous PIV and gradient heat flux measurement of a circular cylinder in cross-flow. Applied Mechanics and Materials 629, 444-449. [CrossRef] [Google Scholar]
  22. website: www.https://www.spbstu.ru/ [Google Scholar]
  23. Zasimova, Marina & Ivanov, Nikolay & Ris, Vladimir & Tschur, N.. (2018). Heat Transfer in a Staggered Bare-Tube Bank Immersed in a Vast Water Pool. High Temperature. 56. 711-718. 10.1134/S0018151X18040211. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.