Open Access
E3S Web Conf.
Volume 143, 2020
2nd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2019)
Article Number 02003
Number of page(s) 5
Section Environmental Science and Energy Engineering
Published online 24 January 2020
  1. V. Klemas, “Remote sensing of emergent and submerged wetlands: an overview,” International INT. J. REMOTE SENS. 34 (2013) [Google Scholar]
  2. R. P. Bukata, “Satellite Monitoring of Inland and Coastal Water Quality,” Crc Taylor & Francis, (2005) [CrossRef] [Google Scholar]
  3. S. C. J. Palmer, T. Kutser, and P. D. Hunter, “Remote sensing of inland waters: Challenges, progress and future directions,” Remote Sens. Environ. 157 (2015) [Google Scholar]
  4. Z. Lee, S. Shang, Q. Lin, Y. Jing, and L. Gong, A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sens. Environ. 177 (2016) [Google Scholar]
  5. N. Pahlevan, Z. Lee, J. Wei, C. B. Schaaf, J. R. Schott, and A. Berk, “On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing,” Remote Sens. Environ. 154 (2014) [Google Scholar]
  6. J. A. Concha and J. R. Schott, “Retrieval of color producing agents in Case 2 waters using Landsat 8,” Remote Sens. Environ. 185 (2016) [Google Scholar]
  7. C. Jiang, W. N. Zhu, Y. Q. Tian, and Y. Qian, “Estimation of Colored Dissolved Organic Matter From Landsat-8 Imagery for Complex Inland Water: Case Study of Lake Huron,” IEEE T GEOSCI. REMOTE. 55 (2017) [Google Scholar]
  8. Alcântara et al., “Modeling the spatio-temporal dissolved organic carbon concentration in Barra Bonita reservoir using OLI/Landsat-8 images,” Model. Earth Syst. Environ. 3 (2017) [PubMed] [Google Scholar]
  9. W. Tan, P. Liu, L. Yi, Y. Shao, and S. Feng, A 30-Year Assessment of Phytoplankton Blooms in Erhai Lake Using Landsat Imagery: 1987 to 2016, Remote Sens. 9 (2017) [Google Scholar]
  10. S. Deyong, H. Chuanmin, Q. Zhongfeng, and S. Kun, “Estimating phycocyanin pigment concentration in productive inland waters using Landsat measurements: a case study in Lake Dianchi,” Optics Express 23 (2015) [Google Scholar]
  11. I. Ogashawara, L. Lin, and M. J. M. Madriñán, Slope algorithm to map algal blooms in inland waters for Landsat 8/Operational Land Imager images, J. APPL. REMOTE SENS. 11 (2016) [Google Scholar]
  12. A. P. H. Association and A. W. W. Association, Standard methods for the examination of water and wastewater. American public health association, (1989) [Google Scholar]
  13. W. Qian, W. Yi, R. Niu, and P. Ling, “Integration of Information Theory, K-Means Cluster Analysis and the Logistic Regression Model for Landslide Susceptibility Mapping in the Three Gorges Area, China,” Remote Sens. 9 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.