Open Access
E3S Web Conf.
Volume 144, 2020
The 2nd International Symposium on Water Resource and Environmental Management (WREM 2019)
Article Number 01002
Number of page(s) 9
Published online 27 January 2020
  1. M.S. Matias, M.M. da Silva, P. Ferreira, E. Ramalho, A geophysical and hydrogeological study of aquifers contamination by a landfill. J. Appl. Geophys. 32, 155–162 (1994). [CrossRef] [Google Scholar]
  2. R. Poudel, Y. Hirai, M. Asari, S. Sakai, Field study of disaster waste management and disposal status of debris after Gorkha Earthquake in Kathmandu, Nepal. J. Mater. Cycles Waste Manag., 1–13 (2019). [Google Scholar]
  3. L. Bengtsson, D. Bendz, W. Hogland, H. Rosqvist, M. Åkesson, Water balance for landfills of different age. J. Hydrol. 158, 203–217 (1994). [CrossRef] [Google Scholar]
  4. K. Chalikakis, V. Plagnes, R. Guerin, R. Valois, F.P. Bosch, Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeol. J. 19, 1169 (2011). [Google Scholar]
  5. D. Ford, P.D. Williams, Karst hydrogeology and geomorphology. John Wiley & Sons, (2013). [Google Scholar]
  6. W.B. White, A brief history of karst hydrogeology: contributions of the NSS. J. Cave Karst Stud. 69, 13–26 (2007). [Google Scholar]
  7. R.C. Gogu, A. Dassargues, Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Geol. 39, 549–559 (2000). [Google Scholar]
  8. M. Bakalowicz, Karst groundwater: a challenge for new resources. Hydrogeol. J. 13, 148–160 (2005). [Google Scholar]
  9. S. Foster, R. Hirata, D. Gomes, M. D’Elia, M. Paris, Groundwater quality protection: a guide for water service companies, municipal authorities and environment agencies. The World Bank, (2002). [CrossRef] [Google Scholar]
  10. E. Slob, M. Sato, G. Olhoeft, Surface and borehole ground-penetrating-radar developments. Geophysics. 75, 75A103-75A120 (2010). [CrossRef] [Google Scholar]
  11. P. Ortoleva, Methods and systems for simulation-enhanced fracture detections in sedimentary basins (2002). [Google Scholar]
  12. M.B. Dobrin, C.H. Savit, Introduction to geophysical prospecting. McGraw-hill New York, 4 (1960). [Google Scholar]
  13. A. Binley, A. Kemna, in Hydrogeophysics. Springer, pp. 129–156 (2005). [CrossRef] [Google Scholar]
  14. C. Gélis, A. Revil, M.E. Cushing, D. Jougnot, F. Lemeille, J. Cabrera, A. De Hoyos, M. Rocher, Potential of electrical resistivity tomography to detect fault zones in limestone and argillaceous formations in the experimental platform of Tournemire, France. Pure Appl. Geophys. 167, 1405–1418 (2010). [CrossRef] [Google Scholar]
  15. P. Cosenza, A. Ghorbani, N. Florsch, A. Revil, Effects of drying on the low-frequency electrical properties of Tournemire argillites. Pure Appl. Geophys. 164, 2043–2066 (2007). [CrossRef] [Google Scholar]
  16. A. Sirhan, M. Hamidi, P. Andrieux, others, Electrical resistivity tomography, an assessment tool for water resource: Case study of Al-Aroub Basin, West Bank, Palestine. Asian J. Earth Sci. 4, 38–45 (2011). [CrossRef] [Google Scholar]
  17. L.D. Slater, D. Lesmes, IP interpretation in environmental investigations. Geophysics. 67, 77–88 (2002). [CrossRef] [Google Scholar]
  18. P. Soupios, I. Papadopoulos, M. Kouli, I. Georgaki, F. Vallianatos, E. Kokkinou, Investigation of waste disposal areas using electrical methods: a case study from Chania, Crete, Greece. Environ. Geol. 51, 1249–1261 (2007). [CrossRef] [Google Scholar]
  19. A.K. Greve, R.I. Acworth, B.F.J. Kelly, 3D cross-hole resistivity tomography to monitor water percolation during irrigation on cracking soil. Soil Res. 49, 661–669 (2011). [CrossRef] [Google Scholar]
  20. G.W. Leney, Field studies in iron ore geophysics. Min. Geophys. 1, 391 (1966). [Google Scholar]
  21. E.E. Maillot, J.S. Sumner, Electrical properties of porphyry deposits at Ajo, Morenci, and Bisbee, Arizona. Min. Geophys. 1, 273–287 (1966). [Google Scholar]
  22. F.W. Schwartz, G.L. McClymont, Applications of surface resistivity methods. Groundwater. 15, 197–202 (1977). [CrossRef] [Google Scholar]
  23. D.W. Urish, The practical application of surface electrical resistivity to detection of ground-water pollution. Groundwater. 21, 144–152 (1983). [CrossRef] [Google Scholar]
  24. K.M. Ault, Sulfur and lead isotope study of the El Mochito Zn-Pb-Ag deposit. Econ. Geol. 99, 1223–1231 (2004). [Google Scholar]
  25. V. Éric, M.P. Cullen, D.G. Feasby, “NI 43-101 Technical Report Amended Preliminary Economic Assessment for the Optimization and Expansion of the El Mochito Mine” (2018). [Google Scholar]
  26. R.C. Finch, Mesozoic stratigraphy of central Honduras. Am. Assoc. Pet. Geol. Bull. 65, 1320–1333 (1981). [Google Scholar]
  27. I.M. Samson, A.E. Williams-Jones, K.M. Ault, J.E. Gagnon, B.J. Fryer, Source of fluids forming distal Zn-Pb-Ag skarns: Evidence from laser ablation--inductively coupled plasma--mass spectrometry analysis of fluid inclusions from El Mochito, Honduras. Geology. 36, 947–950 (2008). [Google Scholar]
  28. W.A. Gose, R.C. Finch, Stratigraphic implications of palaeomagnetic data from Honduras. Geophys. J. Int. 108, 855–864 (1992). [Google Scholar]
  29. I.C.C.C. Palich Julie Qian Wei, EarthProbe: Meeting the Challenges of Gold Exploration through High Resolution Borehole and Surface IP. (2007) [Google Scholar]
  30. W. Qian, B. Milkereit, G. McDowell, K. Stevens, S. Halladay, Borehole Resistivity Logging and Tomography for Mineral Exploration. Proc. Explor. 07 Fifth Decenn. Int. Conf. Miner. Explor., 1115–1118 (2007). [Google Scholar]
  31. M. Loke, 2-D and 3-D Electrical Imaging Surveys. Tutorial, 29 (2004). [Google Scholar]
  32. C.G. Cunningham, Earth and water resources and hazards in Central America. US Department of the Interior, Geological Survey, (1984). [Google Scholar]
  33. J. Bundschuh, G.E. Alvarado, Central America, Two Volume Set: Geology, Resources and Hazards. CRC Press, (2012). [CrossRef] [Google Scholar]
  34. F. Gutiérrez, M. Parise, J. De Waele, H. Jourde, A review on natural and human-induced geohazards and impacts in karst. Earth-Science Rev. 138, 61–88 (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.