Open Access
Issue
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
Article Number 02002
Number of page(s) 12
Section Displacement Mechanisms/EOR/IOR
DOI https://doi.org/10.1051/e3sconf/202014602002
Published online 05 February 2020
  1. Bernard, G.G., Holm, L.W. and Harvey, C.P. (1980). Use of Surfactant to Reduce CO2 Mobility in Oil Displacement. SPE Journal 20 (4): 281-292. [Google Scholar]
  2. Latil, M. Enhanced Oil Recovery (1980) Paris: Editions Technip. [Google Scholar]
  3. Bond, D.C. and Holbrook, O.C. Gas Drive Oil Recovery Process. (1958) United States Patent Office. 30 December. Patented number 2, 866, 507. [Google Scholar]
  4. Nzekwu, B.I. and Bennion, D.W. (1987) Mobility Control in Dynamic Gravity Segregation Flow Systems. Journal of Canadian Petroleum Technology 26 (4): 80-87. JCPT87-04-08. [Google Scholar]
  5. Rossen, W.R. (1996). Foams in Enhanced Oil Recovery. In Foams Theory, Measurements, and Applications. eds. Prud’homme, R.K. and Khan, S.A. 57, ch. 11, 414-464, Marcel Dekker, Inc. New York [Google Scholar]
  6. A.H. Falls, G.J. Hirasaki, T.W. Patzek, P.A. Gauglitz, D.D. Miller, and T. Ratulowski. (1988). SPE Reserv Eng. 3: 844 [CrossRef] [Google Scholar]
  7. Holm, L.W. (1968). The Mechanisms of Gas and Liquid Flow Through Porous Media in the Presence of Foam. Transactions 243, 359-369. [Google Scholar]
  8. Bernard, G.G., Holm, L.W. and Jacobs, W.L. (1965). Effect of Foam on Trapped Gas Saturation and on Permeability of Porous Media to Water. SPE Annual Fall Meeting, 3-6 October, Denver, Colorado, US. SPE-1204. [Google Scholar]
  9. Emadi, A., Sohrabi, M., Farzaneh, S.A. and Ireland, S. (2013). Experimental Investigation of Liquid-CO2 and CO2-Emulsion Application for Enhanced Heavy Oil Recovery. SPE EAGE and SPE Europec, 10-13 June, London, United Kingdom. SPE-164798-MS. [Google Scholar]
  10. Schramm, L.L. and Novosad. (1992). The destabilization of foams for improved oil recovery by crude oils: Effect of the nature of the oil. Journal of Petroleum Science and Engineering 7 (1-2), 77-90. [CrossRef] [Google Scholar]
  11. Prud’homme, R.K. and Khan, S.A. (1996). Foams, Theory, Measurements, and Applications. New York: Marcel Dekker Incorporated. [Google Scholar]
  12. Farajzadeh, R., Andrianov, A., Krastev, R., Hirasaki, G.J. and Rossen, W.R. (2012). Foam-oil interactions in porous media: Implications for foam assisted enhanced oil recovery. Advances in Colloid and Interface Science 183-184, 1-13. [Google Scholar]
  13. Schramm, L.L. and Mannhardt, K. (1996). The effect of wettability on foam sensitivity to crude oil in porous media”. Journal of Petroleum and Engineering 15 (1), 101-113. [CrossRef] [Google Scholar]
  14. Fredriksen, S., Alcorn, Z., Frøland, A. et al. (2019). Surfactant Prefloods During Carbon Dioxide Foam Injection for Integrated Enhanced Oil Recovery in Fractured Oil-Wet Carbonates. SPE Journal. SPE-190168-PA (in press; posted 5 April 2019). https://doi.org/10.2118/190168-PA. [Google Scholar]
  15. Shan, D. and Rossen, W.R. (2002). Optimal Injection Strategies for Foam IOR. SPE/DOE Improved Oil Recovery Symposium, 13-17 April, Tulsa, Oklahoma. SPE-75180-MS. [Google Scholar]
  16. Farajzadeh, R., Andrianov, A., Krastev, R., Hirasaki, G.J. and Rossen, W.R. (2012). Foam-oil interactions in porous media: Implications for foam assisted enhanced oil recovery. Advances in Colloid and Interface Science 183-184, 1-13. [CrossRef] [PubMed] [Google Scholar]
  17. Jones, S.A., Laskaris, G., Vincent-Bonnieu, S., Farajzadeh, R. and Rossen, W.R. (2016). Surfactant Effect on Foam: From Core Flood Experiments To Implicit-Texture Foam Model Parameters. SPE Improved Oil Recovery Conference, 11-13 April, Tulsa, Oklahoma. SPE-179637-MS. [Google Scholar]
  18. Groenenboom, J., Kechut, N.I., Mar-Or, A., Vincent-Bonnieu, S. (2017). Foam Assisted WAG: Injection Strategies to Optimize Performance. SPE/IATMI Asia Pacific Oil & Gas Exhibition, 17-19 October, Jakarta, Indonesia. SPE-186991-MS. [Google Scholar]
  19. Hoefner, M.L. and Evans, E.M. (1995). CO2 Foam: Results from Four Developmental Fields Trials. SPE Reservoir Engineering 10 (4), 273-281. [CrossRef] [Google Scholar]
  20. Chou, S.I., Vasicek, S.L., Pisio, D.L., Jasek, D.E., Goodgame, J.A. (1992). CO2 Foam Field Trial at North Ward Estes. 67th SPE Annual Technical Conference and Exhibition, October 4-7, Washington, D.C. [Google Scholar]
  21. Harpole, K.J., Siemers, W.T. and Gerard, M.G. (1994). CO2 Foam Field Verification Test at EVGSAU: Phase IIIC – Reservoir Characterization and Response to Foam Injection. SPE/DOE 9th Symposium on Improved Oil Recovery, 17-20 April, Tulsa, OK, USA. [Google Scholar]
  22. Henry, R.L.; Fisher, D.R.; Pennel, S. P.; Honnert, M.A. (1996). Field Test of Foam to Reduce CO2 Cycling. SPE/DOE Tenth Symposium on Improved Oil Recovery, April 21–24, Tulsa, OK, US. SPE/DOE 35402 [Google Scholar]
  23. Alcorn, Z.P., Fredriksen, S.B., Sharma, M. et al. (2019). An Integrated Carbon-Dioxide-Foam Enhanced-Oil-Recovery Pilot Program With Combined Carbon Capture, Utilization, and Storage in an Onshore Texas Heterogeneous Carbonate Field. SPE Reservoir Evaluation & Engineering-Reservoir Engineering. SPE-190204-PA (in press; posted 27 March 2019). https://doi.org/10.2118/190204-PA. [Google Scholar]
  24. Graue, A., Viksund, B.G. and Baldwin, B.A. (1999). Reproducible Wettability Alteration of Low-Permeable Outcrop Chalk. SPE Reservoir Evaluation and Engineering 2 (02), 134-140. SPE-55904-PA. [CrossRef] [Google Scholar]
  25. Steinsbø, M., Brattekås, B., Fernø, M.A., Ersland, G. and Graue, A. (2014). Supercritical CO2 Injection for Enhanced Oil Recovery in Fracture Chalk. International Symposium of the Society of Core Analysts, 8-12 September, Avignon, France. SCA2014-092. [Google Scholar]
  26. Jian, B., Puerto, M.C., Wehowsky, A., Dong, P., Johnston, K.P. and Hirasaki, G.J. (2016). Static Adsorption of an Ethoxylated Nonionic Surfactant on Carbonate Minerals. Langmuir 32 (40), 10244-10252. [CrossRef] [PubMed] [Google Scholar]
  27. Steinsbø, M., Brattekås, B., Ersland, G., Bø, K., Opdal, I.E., Tunli, R., Graue, A. and Fernø, M.A. (2015). Foam as Mobility Control for Integrated CO2-EOR in Fractured Carbonates. 18th European Symposium on Improved Oil Recovery, 14-16 April, Dresden, Germany. [Google Scholar]
  28. Hirasaki, G.J. and Lawson, J.B. (1985). Mechanisms of Foam Flow in Porous Media: Apparent Viscosity in Smooth Capillaries. SPE Journal 25 (2), 176-190. [Google Scholar]
  29. Johnson, E.F., Bossler, D.P. and Naumann, V.O. (1959). Calculation of Relative Permeability From Displacement Experiments. Trans. AIME 1959, 216, 370-372. [CrossRef] [Google Scholar]
  30. Sharma, M., Alcorn Z.P., Fredriksen, S.B., Fernø, M., Graue, A. (2017). Numerical Modeling Study for Designing CO2 Foam Filed Pilot. EAGE IOR Symposium, 24-27 April, Stavanger, Norway. [Google Scholar]
  31. Rognmo, A.U., Fredriksen, S.B., Alcorn, Z.P., Sharma, M., Føyen, T., Eide, Ø., Graue, A. and Fernø, M. (2018). Pore-to-Core EOR Upscaling for CO2-foam for CCUS. SPE EUROPEC featured at the 80th EAGE Annual Conference and Exhibition, 11-14 June, Copenhagen, Denmark. SPE-190869-MS. [Google Scholar]
  32. Eide, Ø., Haugen, Å., Svenningsen, S., Hoff, K., Ersland, G., Fernø, M.A. and Graue, A. (2012). Tertiary Liquid and Supercritical CO2 injection in Chalk and Limestone at Strongly Water-Wet and Near Neutral-Wet Conditions. International Symposium of the Society of Core Analysts, 27-30 August, Aberdeen, Scotland. [Google Scholar]
  33. Graue, A., Tonheim, E. and Baldwin, B. 1994. Control and Alteration of Wettability in Low-Permeable Chalk”. Proceedings of the 3rd International Symposium on Evaluation of Reservoir Wettability and its Effect on Oil Recovery, 21-23 September, Laramie, WY. [Google Scholar]
  34. Eide, Ø., Fernø, M.A., Alcorn, Z.P. and Graue, A. (2016). Visualization of Carbon Dioxide Enhanced Oil Recovery by Diffusion in Fractured Chalk. SPE Journal 21 (1), 112-120. [CrossRef] [Google Scholar]
  35. Fernø, M.A., Steinsbø, M., Eide, Ø., Ahmed, A., Ahmed, K. and Graue, A. (2015). Parametric study of oil recovery during CO2 injections in fractured chalk: Influence of fracture permeability, diffusion length and water saturation. Journal of Nat Gas Sci and Eng 27 (2), 1063-1073. [CrossRef] [Google Scholar]
  36. Jadahunandan, P.P. and Morrow, N.R. (1995). Effect of Wettability on Waterflood Recovery for Crude-Oil/Brine/Rock Systems. SPE Reservoir Engineering 10 (1), 40-46. [Google Scholar]
  37. Suffridge, F.E., Raterman, K.T. and Russell, G.C. (1989). Foam Performance Under Reservoir Conditions. 64th SPE ATCE, 8-11 October, San Antonio, Texas, US. SPE-19691-MS. [Google Scholar]
  38. Vikingstad, A.K., Skauge, A., Høiland, H. and Aarra, M. (2005). Foam-oil Interactions Analysed by Static Foam Tests. Colloids and Surfaces A: Physicochem. Eng. Aspects 260 (2005), 189-198. [CrossRef] [Google Scholar]
  39. T.S. Kristiansen and T. Holt. (1992). Properties of Flowing Foam in Porous Media Containing Oil. Presented at the SPE/DOE Eighth Symposium on Enhanced Oil Recovery, Tulsa, OK, USA, April 22-24, 1992. SPE/DOE 24182. [Google Scholar]
  40. Prud’homme, R.K. and Khan, S.A. (1996). Foams, Theory, Measurements, and Applications. New York: Marcel Dekker Incorporated. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.