Open Access
Issue
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
Article Number 02003
Number of page(s) 7
Section Displacement Mechanisms/EOR/IOR
DOI https://doi.org/10.1051/e3sconf/202014602003
Published online 05 February 2020
  1. T. Austad, S. Strand, E. Høgnesen, P. Zhang. “Seawater as IOR fluid in fractured chalk”. In SPE international symposium on oilfield chemistry 2005 Jan 1. Society of Petroleum Engineers. [Google Scholar]
  2. A. Yousef, S. Al-Saleh, A. Al-Kaabi, M. Al-Jawfi. “Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs”. SPE Reservoir Evaluation & Engineering. 2011 Oct 1;14(05):578-93. [CrossRef] [Google Scholar]
  3. A. Yousef, J. Liu, G. Blanchard, S. Al-Saleh, T. Al-Zahrani, R. Al-Zahrani, H. Al-Tammar, N. Al-Mulhim. “Smart waterflooding: industry”. In SPE Annual Technical Conference and Exhibition 2012 Jan 1. Society of Petroleum Engineers. [Google Scholar]
  4. D. Ligthelm, J. Gronsveld, J. Hofman, N. Brussee, F. Marcelis, H. Van der Linde. “Novel Waterflooding Strategy by Manipulation Of Injection Brine Composition”. In EUROPEC/EAGE conference and exhibition 2009 Jan 1. Society of Petroleum Engineers. [Google Scholar]
  5. N. Morrow, J. Buckley. “Improved oil recovery by low-salinity waterflooding”. Journal of Petroleum Technology. 2011 May 1;63(05):106-12. [CrossRef] [Google Scholar]
  6. H. Mahani, A. Keya, S. Berg, W. Bartels, R. Nasralla, W. Rossen. “Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates”. Energy & Fuels. 2015 Mar 3;29(3):1352-67. [CrossRef] [Google Scholar]
  7. M. Jackson, D. Al-Mahrouqi, J. Vinogradov. “Zeta-potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding”. Scientific reports. 2016 Nov 23;6: 37363. [CrossRef] [PubMed] [Google Scholar]
  8. P. McGuire, J. Chatham, F. Paskvan, D. Sommer, F. Carini. “Low salinity oil recovery: An exciting new EOR opportunity for Alaska’s North Slope”. In SPE western regional meeting 2005 Jan 1. Society of Petroleum Engineers. [Google Scholar]
  9. A. Lager, K. Webb, C. Black, M. Singleton, K. Sorbie. “Low salinity oil recovery-an experimental investigation-1”. Petrophysics. 2008 Feb 1;49(01). [Google Scholar]
  10. D. Al Mahrouqi, J. Vinogradov, M. Jackson. “Zeta-potential of artificial and natural calcite in aqueous solution”. Advances in colloid and interface science. 2017 Feb 1;240:60-76. [CrossRef] [PubMed] [Google Scholar]
  11. M. Jackson, J. Vinogradov, G. Hamon, M. Chamerois. “Evidence, mechanisms and improved understanding of controlled salinity waterflooding part 1: Sandstones”. Fuel. 2016 Dec 1;185:772-93. [CrossRef] [Google Scholar]
  12. S. Ayirala, A. Yousef. “A state-of-the-art review to develop injection-water-chemistry requirement guidelines for IOR/EOR projects”. SPE Production & Operations. 2015 Feb 1;30(01):26-42. [CrossRef] [Google Scholar]
  13. S. Ayirala, E. Uehara-Nagamine, A. Matzakos, R. Chin, P. Doe, P. Van den Hoek. “A designer water process for offshore low salinity and polymer flooding applications”. In SPE Improved Oil Recovery Symposium 2010 Jan 1. Society of Petroleum Engineers. [Google Scholar]
  14. W. Alameri, T. Teklu, R. Graves, H. Kazemi, A. AlSumaiti. “Low-salinity water-alternate-surfactant in Low-permeability Carbonate Reservoirs”. In IOR 2015-18th European Symposium on Improved Oil Recovery 2015 Apr 14. [Google Scholar]
  15. G. Hirasaki, C. Miller, M. Puerto. “Recent advances in surfactant EOR”. SPE Journal. 2011 Dec 1;16(04):889-907. [CrossRef] [Google Scholar]
  16. G. Hirasaki G, D. Zhang. “Surface chemistry of oil recovery from fractured, oil-wet, carbonate formations”. Spe Journal. 2004 Jun 1;9(02):151-62. [CrossRef] [Google Scholar]
  17. Q. Liu, M. Dong, X. Yue, J. Hou. “Synergy of alkali and surfactant in emulsification of heavy oil in brine”. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006 Feb 1;273(1-3):219-28. [CrossRef] [Google Scholar]
  18. K. Chan, D. Shah. (1981) “The Physico-Chemical Conditions Necessary to Produce Ultralow Interfacial Tension at the Oil/Brine Interface”. In: Shah D.O. (eds) Surface Phenomena in Enhanced Oil Recovery. Springer, Boston, MA [Google Scholar]
  19. M. Alotaibi, A. Yousef. “The role of individual and combined ions in waterflooding carbonate reservoirs: electrokinetic study”. SPE Reservoir Evaluation & Engineering. 2017 Feb 1;20(01):77-86. [CrossRef] [Google Scholar]
  20. Q. Xie, A. Sari, W. Pu, Y. Chen, P. Brady, N. Al Maskari, A. Saeedi. “pH effect on wettability of oil/brine/carbonate system: Implications for low salinity water flooding”. Journal of Petroleum Science and Engineering. 2018 Sep 1;168:419-25. [CrossRef] [Google Scholar]
  21. P. Brady, J. Krumhansl, P. Mariner. “Surface complexation modeling for improved oil recovery”. In SPE improved oil recovery symposium 2012 Jan 1. Society of Petroleum Engineers. [Google Scholar]
  22. P. Van Cappellen, L. Charlet, W. Stumm, P. Wersin. “A surface complexation model of the carbonate mineral-aqueous solution interface”. Geochimica et Cosmochimica Acta. 1993 Aug 1;57(15):3505-18. [Google Scholar]
  23. O. Pokrovsky, J. Schott, F. Thomas. “Dolomite surface speciation and reactivity in aquatic systems”. Geochimica et Cosmochimica Acta. 1999 Oct 1;63(19-20):3133-43. [Google Scholar]
  24. H. Mahani, A. Keya, S. Berg, R. Nasralla. “Electrokinetics of carbonate/brine interface in low-salinity waterflooding: effect of brine salinity, composition, rock type, and pH on ζ-potential and a surface-complexation model”. SPE Journal. 2017 Feb 1;22(01):53-68. [CrossRef] [Google Scholar]
  25. J. Song, Y. Zeng, L. Wang, X. Duan, M. Puerto, W. Chapman, S. Biswal, G. Hirasaki. “Surface complexation modeling of calcite zeta-potential measurements in brines with mixed potential determining ions (Ca2+, CO32−, Mg2+, SO42−) for characterizing carbonate wettability”. Journal of colloid and interface science. 2017 Nov 15;506:169-79. [CrossRef] [PubMed] [Google Scholar]
  26. F. Heberling, T. Trainor, J. Lützenkirchen, P. Eng, M. Denecke, D. Bosbach. “Structure and reactivity of the calcite–water interface”. Journal of colloid and interface science. 2011 Feb 15;354(2):843-57. [CrossRef] [PubMed] [Google Scholar]
  27. J. Song, S. Rezaee, L. Zhang, Z. Zhang, M. Puerto, O. Wani, F. Vargas, S. Alhassan, S. Biswal, G. Hirasaki. “Characterizing the Influence of Organic Carboxylic Acids and Inorganic Silica Impurities on the Surface Charge of Natural Carbonates Using an Extended Surface Complexation Model”. Energy & Fuels. 2019 Jan 11;33(2):957-67. [CrossRef] [Google Scholar]
  28. T. Takeya, M. Shimokawara, Y. Elakneswaran, T. Nawa, S. Takahashi. “Predicting the electrokinetic properties of the crude oil/brine interface for enhanced oil recovery in low salinity water flooding”. Fuel. 2019 Jan 1;235:822-31. [CrossRef] [Google Scholar]
  29. D. Parkhurst, C. Appelo. “Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations”. US Geological Survey; 2013. [Google Scholar]
  30. J. Israelachvili. “Intermolecular and surface forces”. Academic press; 2011 Jul 22. [Google Scholar]
  31. D. Dzombak, F. Morel. “Surface complexation modeling: hydrous ferric oxide”. John Wiley & Sons; 1990 Mar 16. [Google Scholar]
  32. J. Buckley, K. Takamura, N. Morrow. “Influence of electrical surface charges on the wetting properties of crude oils”. SPE Reservoir Engineering. 1989. 4(03):332-340. [CrossRef] [Google Scholar]
  33. M. Bonto, A. Eftekhari, H. Nick. “An overview of the oil-brine interfacial behavior and a new surface complexation model”. Scientific reports. 2019 Apr 15;9(1):6072. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.