Open Access
Issue |
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 9 | |
Section | Unconventionals and Shales | |
DOI | https://doi.org/10.1051/e3sconf/202014605002 | |
Published online | 05 February 2020 |
- International Energy Agency (IEA/OECD), “20 years of Carbon Capture and Storage - Accelerating future deployment.” Review report (2016) [Google Scholar]
- O. Eiken, P. Ringrose, C. Hermanrud, B. Nazarian, T.A. Torp and L. Høier, “Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit.” Energy Procedia 4, 5541-5548 (2011) [Google Scholar]
- S. Benson and D.R. Cole, “CO2 Sequestration in Deep Sedimentary Formations.” Elements 4, 325-331 (2008) [CrossRef] [Google Scholar]
- H. Koide, M. Takahashi, H. Tsukamoto and Y. Shindo, “Self-trapping mechanisms of carbon dioxide in the aquifer disposal.” Energy Conversion and Management 36, 505-508 (1995) [Google Scholar]
- K.Z. House, D.P. Schrag, C.F. Harvey and K.S. Lackner, “Permanent carbon dioxide storage in deep-sea sediments.” Proc Natl Acad Sci USA 103, 12291-12295 (2006) [CrossRef] [PubMed] [Google Scholar]
- B. Tohidi, J. Yang, M. Salehabadi, R. Anderson, and A. Chapoy, “CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2.” Environ. Sci. Technol. 44, 1509-1514 (2010) [CrossRef] [PubMed] [Google Scholar]
- M. Massah, D. Sun, H. Sharifi and P. Englezos, “Demonstration of gas-hydrate assisted carbon dioxide storage through horizontal injection in lab-scale reservoir.” Journal of Chemical Thermodynamics 117, 106-112 (2018) [CrossRef] [Google Scholar]
- J. Gauteplass, S. Almenningen, G. Ersland and T. Barth, “Hydrate seal formation during laboratory CO2 injection in a cold aquifer.” International Journal of Greenhouse Gas Control 78, 21-26 (2018) [CrossRef] [Google Scholar]
- J. Gauteplass, S. Almenningen, G. Ersland, T. Barth, J. Yang and A. Chapoy, “Multiscale investigation of CO2 hydrate self-sealing potential for carbon geo-sequestration.” Chemical Engineering Journal 381, 3122646 (2020) [CrossRef] [Google Scholar]
- S. Almenningen, J. Gauteplass, P. Fotland, G.L. Aastveit, T. Barth and G. Ersland, “Visualization of hydrate formation during CO2 storage in water-saturated sandstone.” International Journal of Greenhouse Gas Control 79, 272-278 (2018) [CrossRef] [Google Scholar]
- C.A. Rochelle, A.P. Camps, D. Long, A. Milodowski, K. Bateman, D. Gunn, P. Jackson, M.A. Lovell and J. Rees, “Can CO2 hydrate assist in the underground storage of carbon dioxide?” Geological Society 319, 171-183 (2009) [CrossRef] [Google Scholar]
- G.E. Archie, “The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics.” AIME 146, 54-62 (1942) [CrossRef] [Google Scholar]
- Baker-Hughes. Introduction to Wireline Log Analysis (1992) [Google Scholar]
- J.J. Arps, “The Effect of Temperature on the Density and Electrical Resistivity of Sodium Chloride Solutions.” Journal of Petroleum Technology 5, 17-20 (1953) [CrossRef] [Google Scholar]
- A.E. Cook and W.F. Waite, “Archie’s Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs.” Journal of Geophysical Research: Solid Earth 123, 2069-2089 (2018) [CrossRef] [Google Scholar]
- K.A. Birkedal, G. Ersland, L.P. Hauge, A. Graue, K. Hester, J. Stevens and J. Howard, “Electrical resistivity measurements of CH4 hydrate-bearing sandstone during formation.” 7th International Conference on Gas Hydrates (2011) [Google Scholar]
- A.E. Cook, B.I. Anderson, J. Rasmus, K. Sun, Q. Li, T.S. Collett and D.S. Goldberg, “Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico.” Marine and Petroleum Geology 34 (2012) [Google Scholar]
- Y.F. Sun, and D. Goldberg, “Dielectric method of high-resolution gas hydrate estimation.” Geophysical Research Letters 32 (2005) [Google Scholar]
- T. Ramstad and H. Rueslåtten, “Pore scale numerical analysis for geological sequestration of CO2.” Technical report, 1-63 (2013) [Google Scholar]
- C. Hågenvik, “CO2 Injection in Hydrate Bearing Sandstone with Excess Water.” University of Bergen, MSc thesis (2013) [Google Scholar]
- D. Bosch, J. Ledo, P. Queralt, F. Bellmunt, L. Luquot and P. Gouze, “Core-scale electrical resistivity tomography (ERT) monitoring of CO2–brine mixture in Fontainebleau sandstone.” Journal of Applied Geophysics 130, 23-36 (2016) [Google Scholar]
- M. Han, S. Youssef, E. Rosenberg, M. Fleury and P. Levitz, “Deviation from Archie’s law in partially saturated porous media: Wetting film versus disconnectedness of the conducting phase.” Physical Review E 79 (2009) [Google Scholar]
- J.H. Börner, V. Herdegen, J.-U. Repke and K. Spitzer, “The impact of CO2 on the electrical properties of water bearing porous media – laboratory experiments with respect to carbon capture and storage.” Geophysical Prospecting 61, 446-460 (2013) [Google Scholar]
- M. Fleury and H. Deschamps, “Electrical Conductivity and Viscosity of Aqueous NaCl Solutions with Dissolved CO2.” Journal of Chemical & Engineering Data 53, 2505-2509 (2008) [CrossRef] [Google Scholar]
- E. Spangenberg and J. Kulenkampff., “Influence of methane hydrate content on electrical sediment properties.” Geophysical Research Letters 33 (2006) [Google Scholar]
- Y. Liu, W. Zhang, Y. Liu, S. Ren, “Experimental characterization and modelling of acoustic and electrical resistance in hydrate bearing sediments.” 6th International Conference on Gas Hydrates (2008) [Google Scholar]
- J.H. Börner, K. Spitzer, J.-U. Repke and V. Herdegen, “The electrical conductivity of CO2-bearing pore waters at elevated pressure and temperature: a laboratory study and its implications in CO2 storage monitoring and leakage detection.” Geophysical Journal International 203, 1072-1084 (2015) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.