Open Access
Issue
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
Article Number 01005
Number of page(s) 5
Section Green Cities, Eco Industries, and Sustainable Infrastructure
DOI https://doi.org/10.1051/e3sconf/202014801005
Published online 05 February 2020
  1. M. A. Budihardjo, M. Hadiwidodo, H. S. Huboyo, and F. R. Aulia, Characterization of Leachate from the Integrated Solid Waste Treatment Plant at Diponegoro University, Indonesia, E3S Web Conf., 73, 07017 (2018) [CrossRef] [Google Scholar]
  2. S. Bilardi, P. S. Calabrò, R. Greco, and N. Moraci, Selective removal of heavy metals from landfill leachate by reactive granular filters, Sci. Total Environ., 644, 335–341 (2018) [PubMed] [Google Scholar]
  3. G. Varank et al., Migration behavior of landfill leachate contaminants through alternative composite liners, Sci. Total Environ., 409, 17 3183–3196 (2011) [PubMed] [Google Scholar]
  4. Lalchhingpuii, D. Tiwari, Lalhmunsiama, and S. M. Lee, Chitosan templated synthesis of mesoporous silica and its application in the treatment of aqueous solutions contaminated with cadmium(II) and lead(II), Chem. Eng. J., 328, 434–444 (2017) [Google Scholar]
  5. A. E. Burakov et al., Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxicol. Environ. Saf., 148, 702–712 (2018) [CrossRef] [PubMed] [Google Scholar]
  6. J. Beiyuan et al., Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment, Chemosphere, 166, 489–496 (2017) [PubMed] [Google Scholar]
  7. J. H. Park, N. Bolan, M. Megharaj, and R. Naidu, Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils, Sci. Total Environ., 409, 4 853–860 (2011) [CrossRef] [PubMed] [Google Scholar]
  8. R. Senthilkumar, K. Vijayaraghavan, M. Thilakavathi, P. V. R. Iyer, and M. Velan, Application of seaweeds for the removal of lead from aqueous solution, Biochem. Eng. J., 33, 3 211–216 (2007) [Google Scholar]
  9. S. Shu, W. Zhu, S. W. Wang, C. W. W. Ng, Y. Chen, and A. Chung Fai Chiu, Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: Centrifuge and numerical modeling approach, Sci. Total Environ., 612, 1123–1131 (2017) [PubMed] [Google Scholar]
  10. R. R. Pawar, Lalhmunsiama, H. C. Bajaj, and S. M. Lee, Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies, J. Ind. Eng. Chem., 34, 213–223 (2016) [Google Scholar]
  11. M. K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308, 438–462 (2017) [Google Scholar]
  12. L. Cao, Z. Li, S. Xiang, Z. Huang, R. Ruan, and Y. Liu, Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater, Bioresour. Technol., 284, 448–455 (2019) [Google Scholar]
  13. S. Salem and A. Salem, A novel design for clean and economical manufacturing new nano-porous zeolite based adsorbent by alkali cement kiln dust for lead uptake from wastewater, J. Clean. Prod., 143, 440–451 (2017) [Google Scholar]
  14. A. S. Bhatt et al., Adsorption of an anionic dye from aqueous medium by organoclays: equilibrium modeling, kinetic and thermodynamic exploration, RSC Adv., 2, 23 8663–8671 (2012) [Google Scholar]
  15. A. Sdiri, T. Higashi, and F. Jamoussi, Adsorption of copper and zinc onto natural clay in single and binary systems, Int. J. Environ. Sci. Technol., 11 (2014) [Google Scholar]
  16. S. Wang, Y. Dong, M. He, L. Chen, and X. Yu, Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions, Appl. Clay Sci., 43, 2 164–171 (2009) [Google Scholar]
  17. M. Mousavi, I. Alemzadeh, and M. Vossoughi, Use of Modified Bentonite for Phenolic Adsorption in Treatment of Olive Oil Mill Wastewater, Iran. J. Sci. Technol. Trans. B Eng., 30 (2006) [Google Scholar]
  18. M. Niu et al., Immobilization of Pb2+ and Cr3+ using bentonite-sulfoaluminate cement composites, Constr. Build. Mater., 225, 868–878 (2019) [Google Scholar]
  19. G. B. B. Varadwaj, K. Parida, and V. Nyamori, Transforming inorganic layered montmorillonite into inorganic-organic hybrid materials for various applications: A brief overview, Inorg. Chem. Front., 3 (2016) [PubMed] [Google Scholar]
  20. T. Feng et al., Graphene oxide wrapped melamine sponge as an efficient and recoverable adsorbent for Pb(II) removal from fly ash leachate, J. Hazard. Mater., 367, 26–34 (2019) [Google Scholar]
  21. N. G. Turan and O. N. Ergun, Removal of Cu(II) from leachate using natural zeolite as a landfill liner material, J. Hazard. Mater., 167, 1–3 696–700 (2009) [Google Scholar]
  22. A. Salem and R. Akbari Sene, Removal of lead from solution by combination of natural zeolite-kaolin-bentonite as a new low-cost adsorbent, Chem. Eng. J., 174, 2–3 619–628 (2011) [Google Scholar]
  23. A. Kaya and S. Durukan, Utilization of bentonite-embedded zeolite as clay liner, Appl. Clay Sci., 25, 1–2 83–91 (2004) [Google Scholar]
  24. F. Bish and G. D. Guthrie, Clays and zeolites, Heal. Eff. Miner. Dusts. Rev. Miner., 28, 168–184 (1994) [Google Scholar]
  25. H. Xu, W. Zhu, X. Qian, S. Wang, and X. Fan, Studies on hydraulic conductivity and compressibility of backfills for soil-bentonite cutoff walls, Appl. Clay Sci., 132–133, 326–335 (2016) [Google Scholar]
  26. M. Alexandre and P. Dubois, Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials, Mater. Sci. Eng. R Reports, 28, 1–63 (2000) [CrossRef] [Google Scholar]
  27. BSN, SNI 6989.8:2009 Water and Wastewater – Part 8: Methods for Measurement of Lead (Pb) using Atomic Absorption Spectrophotometry (AAS) (in Indonesia), Badan Stand. Nas. (2009) [Google Scholar]
  28. ASTM International, ASTM D698-07 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, Annu. B. ASTM Stand. (2007) [Google Scholar]
  29. ASTM International, ASTM D5084-03 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter, Annu. B. ASTM Stand. (2003) [Google Scholar]
  30. L. S. Kostenko, I. I. Tomashchuk, T. V. Kovalchuk, and O. A. Zaporozhets, Bentonites with grafted aminogroups: Synthesis, protolytic properties and assessing Cu(II), Cd(II) and Pb(II) adsorption capacity, Appl. Clay Sci., 172, 49–56 (2019) [Google Scholar]
  31. Y. J. Du, R. D. Fan, S. Y. Liu, K. R. Reddy, and F. Jin, Workability, compressibility and hydraulic conductivity of zeolite-amended clayey soil/calcium-bentonite backfills for slurry-trench cutoff walls, Eng. Geol., 195, 258–268 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.