Open Access
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
Article Number 05007
Number of page(s) 10
Section Environment Restoration and Rehabilitation
Published online 05 February 2020
  1. F. M. H. Jadia C., “Phytoremediation of heavy metals : Recent techniques,” African J. Biotechnol., vol. 8, no. 6, pp. 921–928, (2009) [Google Scholar]
  2. W. J. Rankin, Minerals, metals and sustainability : meeting future material needs. Collingwood: Vic.: CSIRO Pub, (2011) [CrossRef] [Google Scholar]
  3. N. D. Briones, “Mining pollution: The case of the Baguio mining district, the philippines,” Environ. Manage., vol. 11, no. 3, pp. 335–344, (1987) [Google Scholar]
  4. E. Rey and R. J. Saturay, “Small Scale Mining in the Philippines: Towards Genuine National Development,” Baguio, (2005) [Google Scholar]
  5. L. J. L. Diaz, “Terminal Report-MinERS Project E: Nanofiber membrane adsorption for third level wastewater treatment method for small-scale mining operations,” Quezon City, (2017) [Google Scholar]
  6. USDA, “Heavy Metal Soil Contamination,” Soiil Qual. Urban Tech. Note, vol. 5, no. 3, pp. 1–7, (2000) [Google Scholar]
  7. Z. He, Shentu, X. Yang, Baligar, T. Zhang, and & Stoffella, “Heavy Metal Contamination of Soils: Sources, Indicators, and Assessment,” J. Environ. Indic., vol. 9, no. Table 2, pp. 17–18, (2015) [Google Scholar]
  8. P. Y. Yau and R. J. Murphy, “Biodegraded coco peat as a Horticultural Substrate,” in In XXV International Horticultural Congress, Part 7: Quality of Horticultural Products, pp. 275–78, (2000) [Google Scholar]
  9. H. Ali, E. Khan, and M. A. Sajad, “Phytoremediation of heavy metals-Concepts and applications,” Chemosphere, vol. 91, no. 7, pp. 869–881, (2013) [Google Scholar]
  10. R. Nirola, M. Megharaj, T. Palanisami, R. Aryal, K. Venkateswarlu, and Ravi Naidu, “Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine – a quest for phytostabilization,” J. Sustain. Min., vol. 14, no. 3, pp. 115–123, (2015) [CrossRef] [Google Scholar]
  11. A. O. Fayiga, L. Q. Ma, X. Cao, and B. Rathinasabapathi, “Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.,” Environ. Pollut., vol. 132, no. 2, pp. 289–296, (2004) [Google Scholar]
  12. L. M. Mateos, E. Ordóñez, M. Letek, and J. A. Gil, “Corynebacterium glutamicumas a model bacterium for the bioremediation of arsenic,” Int. Microbiol., vol. 9, no. 3, pp. 207–215, (2006) [PubMed] [Google Scholar]
  13. A. M. Paz-Alberto and G. C. Sigua, “Phytoremediation: A Green Technology to Remove Environmental Pollutants,” Am. J. Clim. Chang., vol. 02, no.01, pp. 71–86, (2013) [CrossRef] [Google Scholar]
  14. H. Bothe, “Detoxification of Heavy Metals,” vol. 30, pp. 35–58, (2011) [Google Scholar]
  15. A. P. G. C. Marques, A. O. S. S. Rangel, and P. M. L. Castro, Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology, vol. 39, no. 8. (2009) [Google Scholar]
  16. N. D. Mganga, “The Potential of Bioaccumulation and Translocation of Heavy Metals in Plant Species Growing around the Tailing Dam in Tanzania,” vol. 3, no. 10, pp. 690–697, (2014) [Google Scholar]
  17. B. Lorestani, M. Cheraghi, and N. Yousefi, “Phytoremediation Potential of Native Plants Growing on a Heavy Metals Contaminated Soil of Copper mine in Iran,” World Acad. Sci. Eng. Technol., vol. 53, no. 5, pp. 377–382, (2011) [Google Scholar]
  18. P. Visoottiviseth, K. Francesconi, and W. Sridokchan, “The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land,” Environ. Pollut., vol. 118, no. 3, pp. 453–461, (2002) [Google Scholar]
  19. L. Q. Ma, K. M. Komar, C. Tu, W. Zhang, and Y. Cai, “A fern that hyperaccumulates arsenic.,” Nature, vol. 409, p. 579, (2001) [Google Scholar]
  20. T. Chen, C. Wei, Z. Huang, Q. Huang, Q. Lu, and Z. Fan, “Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation.,” Chinese Sci. Bull., vol. 47, pp. 902–905, (2002) [CrossRef] [Google Scholar]
  21. K. Francesconi, P. Visoottiviseth, W. Sridokchan, and W. Goessler, “Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: A potential phytoremediator of arsenic-contaminated soils,” Sci. Total Environ., vol. 284, no. 1–3, pp. 27–35, (2002) [Google Scholar]
  22. T. K. A. Bui, D. K. Dang, T. K. Nguyen, N. M. Nguyen, Q. T. Nguyen, and H. C. Nguyen, “Phytoremediation of heavy metal polluted soil and water in Vietnam,” J. Viet. Env., vol. 6, no. 1, pp. 47–51, (2014) [Google Scholar]
  23. F. Perlatti, T. O. Ferreira, R. E. Romero, M. C. G. Costa, and X. L. Otero, “Copper accumulation and changes in soil physical-chemical properties promoted by native plants in an abandoned mine site in northeastern Brazil: Implications for restoration of mine sites,” Ecol. Eng., vol. 82, pp. 103–111, (2015) [Google Scholar]
  24. J. K. A. Dahilan and J. Q. Dalagan, “Bioavailability and Accumulation Assessment of Copper in Pityrogramma calomelanos,” Philipp. J. Sci., vol. 146, pp. 331–338, (2017) [Google Scholar]
  25. C. Koller, J. Patrick, R. Rose, C. Offler, and G. MacFarlane, “Arsenic and heavy metal accumulation by Pteris vittata L. and P. umbrosa R. Br,” Bull. Environ. Contam. adn Toxicol., vol. 80, no. 2, p. 128, (2008) [CrossRef] [Google Scholar]
  26. G. Yang and H. He, “A review of Pteridophyta Potential in Phytoremediation of Heavy Metal Contaminated Environments,” Asian Agric. Res., vol. 8, no. 11, pp. 49-53,60, (2016) [Google Scholar]
  27. J. L. C. Algo, T. R. Perez, R. E. C. Perez, and R. J. R. Claveria, “A Survey of Indigenous Copper Metallophytes in the Mankayan Mineral District, Benguet, Philippines, with Potential Applications to Post-Mining Rehabilitation,” In Abstracts of Papers, 36th NAST Annual Scientific Meeting, Transactums of the National Academy of Science and Technology (ISSN 0115-88-48) Vol 36, No.1, (2014) [Google Scholar]
  28. Y. P. Kalra, Handbook of Reference Methods for Plant Analysis. New York: CRC Press Taylor & Francis Group, (1998) [Google Scholar]
  29. S. Khalid, M. Shahid, N. K. Niazi, B. Murtaza, I. Bibi, and C. Dumat, “A comparison of technologies for remediation of heavy metal contaminated soils,” J. Geochemical Explor., vol. 182, pp. 247–268, (2017) [CrossRef] [Google Scholar]
  30. D. Egamberdieva, D. Jabborova, and A. Hashem, “Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid.,” Saudi J. Biol., (2015) [Google Scholar]
  31. WHO, “World Health Organization (WHO).,” Avenue Appia 20 1211 Geneva 27 Switzerland, (2008) [Google Scholar]
  32. R. A. Efroymson, M. E. Will, G. W. Suter, and A. C. Wooten, “Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants : 1997 Revision,” (1997) [Google Scholar]
  33. M. Rezvani and F. Zaefarian, “Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis,” Aust. J. Agric. Eng., vol. 2, no. 4, pp. 114–119, (2011) [Google Scholar]
  34. A. Baker and R. Brooks, “Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution ecology and phytochemistry.,” Biorecovery, vol. 1, pp. 81–126, (1989) [Google Scholar]
  35. A. Kumari, B. Lal, Y. B. Pakade, and P. Chand, “Assessment of bioaccumulation of heavy metal by Pteris vittata l. growing in the vicinity of fly ash,” Int. J. Phytoremediation, vol. 13, no. 8, pp. 779–787, (2011) [Google Scholar]
  36. A. Kumari, B. Lal, Y. B. Pakade, and P. Chand, “Assessment of Bioaccumulation of Heavy Metal by Pteris Vittata L . Growing in the Vicinity of Fly Ash,” Int. J. Phytoremediation, vol. 13, pp. 779–787, (2011) [Google Scholar]
  37. A. O. Fayiga, L. Q. Ma, and B. Rathinasabapathi, “Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L.,” Environ. Exp. Bot., vol. 62, no. 3, pp. 231–237, (2008) [Google Scholar]
  38. M. I. Silva Gonzaga, J. A. Gonzaga Santos, and L. Q. Ma, “Arsenic phytoextraction and hyperaccumulation by fern species,” Sci. Agric., vol. 63, pp. 90–101, (2006) [CrossRef] [Google Scholar]
  39. N. K. Niazi, B. Singh, L. Van Zwieten, and A. G. Kachenko, “Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogrammacalomelanos var. austroamericana: A long-term study,” Environ. Sci. Pollut. Res., vol. 19, no. 8, pp. 3506–3515, (2012) [CrossRef] [Google Scholar]
  40. S. Mathews, “Arsenic Hyperaccumulation by Pteris vittata L.- Arsenic Transformation, Uptake and Environmental Impact,” The University of Florida, (2011) [Google Scholar]
  41. K. J. Verdell, “Microbial Volatilization: Bioremediation of Soils Contaminated with Arsenic,” The Ohio State University, (2008) [Google Scholar]
  42. X. Y. Liao, T. B. Chen, M. Lei, Z. C. Huang, X. Y. Xiao, and Z. Z. An, “Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils,” Plant Soil, vol. 261, no. 1–2, pp. 109–116, (2004) [Google Scholar]
  43. D. Egamberdieva, E. F. Abd-Allah, and J. A. T. da Silva, “Microbially Assisted Phytoremediation of Heavy Metal-Contaminated Soils,” Plant Metal Interaction: Emerging Remediation Techniques, pp. 483–498, (2016) [CrossRef] [Google Scholar]
  44. I. Yruela, “Toxic metals in plants,” Brazilian J. Plant Physiol., vol. 17, no. 1, pp. 145–156, (2005) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.