Open Access
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
Article Number 05006
Number of page(s) 6
Section Environment Restoration and Rehabilitation
Published online 05 February 2020
  1. D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Crelman, C. Mabuni, A critical assessment of chromium in the environment, Crit. Rev. Environ. Sci. Technol. 29 (1999) 1–46. [CrossRef] [Google Scholar]
  2. Oboh I, Aluyor E, Udu T, “Biosorption of Heavy Metal Ions from Aqueous Solutions Using a Biomaterial”, Leonardo J. Sci, Vol. 14, 2009, pp. 58-65, ISSN 1583-0233. [Google Scholar]
  3. Velásquez L, Dussan J, “Biosorption and Bioaccumulation of Heavy Metals on Dead and Living Biomass of Bacillus sphaericus”, J. Hazard. Mater, Vol. 167, 2009, pp. 713-716. [Google Scholar]
  4. Eccles H, “Treatment of Metal-Contaminated Wastes: Why Select a Biological Process?”, Trends Biotechnol, Vol. 17, 1999, pp. 462-465. [CrossRef] [PubMed] [Google Scholar]
  5. Gadd GM, “Biosorption : Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment”, J. Chem. Technol. Biotechnol, Vol. 84, 2009, pp. 13-28. [Google Scholar]
  6. Rinanti, Astri, Melati Ferianita Fachrul, Rositayanti Hadisoebroto, dan Mawar Silalahi. 2017. Improving Biosorption of Cu(II)-Ion Artificial Wastewater By Immobilized Biosorbent Of Tropical Microalgae. Japan: International Journal of Geomate, Vol.13 Issue 36. [Google Scholar]
  7. N. Arancibia-Miranda, J. Silva-Yumi, M. Escudey, Effect of cations in the background electrolyte on the adsorption kinetics of copper and cadmium and the isoelectric point of imogolite, J. Hazard. Mater. 299 (2015) 675–684. [Google Scholar]
  8. Z.A. Sutirman,M.M. Sanagi, K.J.A. Karim,W.A.W. Ibrahim, B.H. Jume, Equilibrium, kinetic andmechanismstudies of Cu(II) and Cd(II) ions adsorption bymodified chitosan beads, Int. J. Biol. Macromol. 116 (2018) 255–263. [CrossRef] [PubMed] [Google Scholar]
  9. Prastika, Alifaturrahma dan Okik, Hendriyanto C.2016. Utilization of Kepok Banana Skin as an Adsorbent to Removing Cu. Environmental Engineering Journal, 8 (2): 105-111. [Google Scholar]
  10. Fitriani D., D. Oktiarni., dan Lusiana. 2015.Utilization Of Banana Skins As Methylene Blue Dyes Adsorbent. Journal Gradien. 11(2): 1091-1095. [Google Scholar]
  11. H. Ucun, O. Aksakal, E. Yildiz, Copper(II) and zinc(II) biosorption on Pinus sylvestris L., J. Hazard. Mater. 161 (2009) 1040–1045. [Google Scholar]
  12. Hossain,M. A., H. H. Ngo, W. S. Guo and T. V. Nguyen.2012.Removal of Copper from Water by Adsorption onto Banana Peel as Bioadsorbent.Int.J.Of Geomate, EOMATE, 2(2) : 227-234. [Google Scholar]
  13. Maleki, Afshin., B Hayati., M Naghizadeh., S.W Joo. 2015. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. Journal of Industrial and Engineering Chemistry. 28:211-216. [CrossRef] [Google Scholar]
  14. N.C. Feng, X.Y. Guo, S. Liang, Adsorption study of copper(II) by chemically modified orange peel, J. Hazard. Mater. 164 (2009) 1286–1292. [Google Scholar]
  15. Parmar,M.and L.S. Thakur.2013.Heavy Metal Cu, Ni And Zn: Toxicity, Health Hazards And Their Removal Techniques By Low Cost Adsorbents: A Short Overview.International Journal of Plant, Animal and Environmental Sciences. [Google Scholar]
  16. Siwi, Widyanigrum Permata. 2016. Effect of Biosorbent Immobilization on Absorption of Copper Heavy Metal (Cu2 +) with Temperature Variations and Initial Concentration of Waste. Jakarta: Teknik Lingkungan, Fakultas Arsitektur Lanskap dan Teknologi Lingkungan.Universitas Trisakti. [Google Scholar]
  17. E.S. Priya and P.S. Selvan, Water Hyacinth (Eichhornia crassipes) – An Efficient and Economic Adsorbent for Textile Effluent Treatment – A Review , Arabian Journal of Chemistry (2017) 10, S3548-S3558. [CrossRef] [Google Scholar]
  18. H. Panda, N. Tiadi, M. Mohanty, C.R. Mohanty, Studies on Adsorption Behavior of An Industrial Waste for Removal of Chromium from Aqueous Solution, South African Journal of Chemical Engineering (2017) 23, 132-138. [Google Scholar]
  19. A. Ali, K. Saeed, and F. Mabood, Removal of Chromium (VI) from Aqueous Medium using Chemically Modified Banana Peels as Efficient Low-Cost Adsorbent, Alexandria Engineering Journal (2016) 55, 2933-2942. [CrossRef] [Google Scholar]
  20. O.E.A. Salam, N.A. Reiad, and M.M. ElShafei, A Study of The Removal Characteristics of Heavy from Wastewater by Low-Cost Adsorbents, Journal of Advanced Research (2011) 2, 297-303. [Google Scholar]
  21. M.K. Rai, G. Shahi, V. Meena, R. Meena, S. Chakraborty, R.S. Singh, and B.N. Rai, Removal of Hexavalent Chromium Cr(VI) using Activated Carbon Prepared from Mango Kernel Activated with H3PO4, Resource-Efficient Technologies (2016) 2, S63-S70. [CrossRef] [Google Scholar]
  22. Mukimin, A., Zen, N., Purwanto, A., Wicaksono, K. A., Vistanty, H., & Alfauzi, A. S. (2017). Application of a full-scale electrocatalytic reactor as real batik printing wastewater treatment by indirect oxidation process. Journal of Environmental Chemical Engineering, 5(5), 5222–5232. [Google Scholar]
  23. Birgani, P. M., Ranjbar N., Abdullah, R. C., Wong, T., Lee, G., Ibrahim, S., Jang, M. (2016). An efficient and economical treatment for batik textile wastewater containing high levels of silicate and organic pollutants using a sequential process of acidification, magnesium oxide, and palm shell-based activated carbon application. Journal of Environmental Management, 184, 229–239. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.