Open Access
Issue
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
Article Number 07006
Number of page(s) 6
Section Water Resource Conversation
DOI https://doi.org/10.1051/e3sconf/202014807006
Published online 05 February 2020
  1. Gassert, e.a. Water Stress by Country. 2013 [cited 2018. [Google Scholar]
  2. Duke. M.C, O.B.-A.J., Milne.N,Zhu,B,Lin.J&Diniz da Costa, Seawater desalination perfromance. Sep.Purif.Technol, 2009. 68: p. 629. [Google Scholar]
  3. M.Elma, C.Y., D.K.Wang, S.Smart, J.C. Diniz da Costa, Microporous Silica Based Membrane for Desalination. Journal of Water, 2012. [Google Scholar]
  4. Duke, M.C., S. Mee, and J.C.D. da Costa, Performance of porous inorganic membranes in non-osmotic desalination. Water Research, 2007. 41(17): p. 3998-4004. [CrossRef] [PubMed] [Google Scholar]
  5. Chen, L., et al., Investigation of the long-term desalination performance of membrane capacitive deionization at the presence of organic foulants. Chemosphere, 2018. 193: p. 989-997. [Google Scholar]
  6. M.C. Duke, S.M., J.C. Diniz da Costa, Performance of porous inorganic membranes in ion-osmotic desalination. Water Res, 2007. 41: p. 3998-4004. [Google Scholar]
  7. S. Wijaya, M.C.D., J.C. Diniz da Costa, Cobalt oxide silica membranes for desalination. J. Colloid Interface Sci, 2012. 368: p. 70-76. [Google Scholar]
  8. H. Yan, W.Y., Y.Hongxing, TEOS/silane coupling agent composed double layers structure: A novel super-hydrophilic coating with controllable water contact angle value. Applied Energy, 2015. [Google Scholar]
  9. L.Liu, D.W., Influence of sol gel conditioning on the cobalt phase. Membranes Sci, 2015. 475: p. 425-432. [CrossRef] [Google Scholar]
  10. Lin, C.X.C., et al., Cobalt oxide silica membranes for desalination. Journal of colloid and interface science, 2012. 368(1): p. 70-76. [CrossRef] [PubMed] [Google Scholar]
  11. Ladewig, B.P., et al., Preparation, Characterization and Performance of Templated Silica Membranes in Non-Osmotic Desalination. Materials, 2011. 4(5): p. 845. [CrossRef] [Google Scholar]
  12. Tsuru, T., et al., Permeation properties of hydrogen and water vapor through porous silica membranes at high temperatures. AIChE Journal, 2011. 57(3): p. 618-629. [CrossRef] [Google Scholar]
  13. Elma, M., et al. Fabrication of Interlayer-free P123 Caronised Template Silica Membranes for Water Desalination: Conventional Versus Rapid Thermal Processing (CTP vs RTP) Techniques. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing. [Google Scholar]
  14. Rahma, A., et al., Removal of natural organic matter for wetland saline water desalination by coagulation-pervaporation. Jurnal Kimia Sains dan Aplikasi, 2019. 22(3): p. 85-92. [CrossRef] [Google Scholar]
  15. Elma, M., et al., Fabrication of interlayer-free silica-based membranes – effect of low calcination temperature using an organo-catalyst. Membrane Technology, 2019. 2019(2): p. 6-10. [CrossRef] [Google Scholar]
  16. Pratiwi, A.E., et al., Deconvolution of pectin carbonised template silica thin-film: synthesis and characterisation. Membrane Technology, 2019. 2019(9): p. 5-8. [CrossRef] [Google Scholar]
  17. M. Elma, D.K.W., C. Yacou, J.C.Diniz da Costa, Interlayer-free P123 carbonised templete silica membranes for desalination with educed salt concentration polarisation. J. Membr. Sci, 2015a. 475: p. 376-383. [CrossRef] [Google Scholar]
  18. Y. T. Chua, C.X.C.L., F. Kleitz, and S. Smart, Sythesis of mesoporous carbon-silica nanocomposite water-treatment membranes using a triconstituent co-assembly method. J. Mater. Chem. A., 2015. 00: p. 1-3. [Google Scholar]
  19. Socrates, G., Infrared and Raman Characteristics Group Frequencies: Tables and Charts. 3rd ed. 2001, West Sussex: John Wiley & Sons Ltd. [Google Scholar]
  20. Singh, L.P., Agarwal, S.K., Bhattachayya, S.K.,Sharma,U.,& Ahalawat,S, Preparation of Nanoparticles and its beneficial Role In Cementitious Materials. Nanomaterials and Ananotechnology, 2011. 1: p. 44-51. [Google Scholar]
  21. Ayral, A., et al., Microporous Silica Membrane: Basic Principles and Recent Advances, in Membrane Science and Technology. 2008, Elsevier. p. 33-79. [CrossRef] [Google Scholar]
  22. Giessler.S, J., L.Diniz da Costa. J.C, Lu.G.Q, Pefromance of hydrophobic and. Sep. Purif. Technol, 2003. 32: p. 255-264. [CrossRef] [Google Scholar]
  23. Brinker, C.J., Scherer, G.W, Sol-Gel Science : The Physics and Chemisty of Sol-Gel Processing. Academic Press: San Diego, CA, 1990. [Google Scholar]
  24. James, S.R., Introduction to the principles of ceramic processing. John Willey and Sons Inc, New York, 1988. [Google Scholar]
  25. M.Elma, D.K.W., J.C. Diniz da Costa C. Yacou, Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination. Journal of Membranes. 2013. [Google Scholar]
  26. Chua.Y.T, L.C.X.C., Kleitz.F,Zhao.X.S,Smart.S, Nanpoporous organosilica membrane. Chem. Commun, 2013. 49: p. 4534-4536. [CrossRef] [Google Scholar]
  27. Duke.M.C, M.S., Diniz daCosta, J.C., Performance of porous inorganic membrane. Water Res, 2007. 41: p. 3998-4004. [Google Scholar]
  28. Yang, H., et al., Interlayer-Free Hybrid Carbon-Silica Membranes for Processing Brackish to Brine Salt Solutions by Pervaporation. Journal of Membrane Science, 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.