Issue |
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
|
|
---|---|---|
Article Number | 07006 | |
Number of page(s) | 6 | |
Section | Water Resource Conversation | |
DOI | https://doi.org/10.1051/e3sconf/202014807006 | |
Published online | 05 February 2020 |
Organo Silica Membranes for Wetland Saline Water Desalination: Effect of membranes calcination temperatures
1 Department of Chemical Engineering, University of Lambung Mangkurat, Banjarbaru. South Kalimantan. Indonesia
2 Materials and Membranes Research Group (M2ReG), University of Lambung Mangkurat, Banjarbaru, South Kalimantan, Indonesia
* Corresponding author: m.elma@ulm.ac.id
Wetland saline water has great potential to overcome water scarcity due to high salinity of intruded seawater. This work determines performance of silica membranes using organo catalyst applied for wetland saline water desalination via pervaporation and investigates the effect of calcination temperatures. These membranes were prepared from precursor tetraethyl orthosilicate (TEOS) for 3 h through sol-gel process refluxed at 0°C (membrane A) and 50°C (membrane B). The sols were dipcoated onto alumina (Al2O3) support for 4 layers followed by calcination for 1 h. Performance of membranes were evaluated by feeding wetland saline water through desalination at room temperature. Results show the water flux for membrane A were 0.27 & 0.15 kg.m-2.h-1 and salt rejection were 97.5 & 99 % as a function of calcination temperature (200 & 250°C), respectively. Furthermore, water flux of membranes B were 0.90 & 0.93 kg.m-2.h-1 and excellent salt rejection (>99.9 %) for both calcination temperatures. The highest water flux and salt rejection were found for membranes B. For both using citric acid under refluxed and calcination process, it gives more vibration of Si-C formation and membrane pores. This membrane is the very first and mesoporous organo silica membranes which is successfully fabricated from organo catalyst.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.