Open Access
Issue
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
Article Number 07008
Number of page(s) 5
Section Water Resource Conversation
DOI https://doi.org/10.1051/e3sconf/202014807008
Published online 05 February 2020
  1. S. Benfer, U.P., H. Siewert, G. Tomandl Development and characterization of ceramic nanofiltration membranes. Sep. Purif. Technol, 2001. 22-23: p. 231-237. [Google Scholar]
  2. H. Yan, W.Y., Y.Hongxing, TEOS/silane coupling agent composed double layers structure: A novel super-hydrophilic coating with controllable water contact angle value. Applied Energy, 2015. [Google Scholar]
  3. M.Elma, C.Y., D.K.Wang, S.Smart, J.C. Diniz da Costa, Microporous Silica Based Membrane for Desalination. Journal of Water, 2012. [Google Scholar]
  4. Smart, S., J.F. Vente, and J.C. Diniz da Costa, High temperature H2/CO2 separation using cobalt oxide silica membranes. International Journal of Hydrogen Energy, 2012. 37(17): p. 12700-12707. [Google Scholar]
  5. Liu, L., et al., Interlayer-free microporous cobalt oxide silica membranes via silica seeding sol–gel technique. Journal of Membrane Science, 2015. 492: p. 1-8. [Google Scholar]
  6. Kanezashi, M. and M. Asaeda, Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. Journal of Membrane Science, 2006. 271(1): p. 86-93. [Google Scholar]
  7. Darmawan, A., et al., Interlayer free – nickel doped silica membranes for desalination. IOP Conference Series: Materials Science and Engineering, 2017. 172(1): p. 012001. [CrossRef] [Google Scholar]
  8. Darmawan, A., et al., Structural evolution of nickel oxide silica sol-gel for the preparation of interlayer-free membranes. Journal of Non-Crystalline Solids, 2016. 447: p. 9-15. [Google Scholar]
  9. Darmawan, A., et al., Binary iron cobalt oxide silica membrane for gas separation. Journal of Membrane Science, 2015. 474: p. 32-38. [Google Scholar]
  10. Ladewig, B.P., et al., Preparation, Characterization and Performance of Templated Silica Membranes in Non-Osmotic Desalination. Materials, 2011. 4(5): p. 845. [CrossRef] [Google Scholar]
  11. Duke, M.C., S. Mee, and J.C.D. da Costa, Performance of porous inorganic membranes in non-osmotic desalination. Water Research, 2007. 41(17): p. 3998-4004. [CrossRef] [PubMed] [Google Scholar]
  12. Wijaya, S., M.C. Duke, and J.C. Diniz da Costa, Carbonised template silica membranes for desalination. Desalination, 2009. 236(1): p. 291-298. [CrossRef] [Google Scholar]
  13. Syauqiyah, I., et al. Interlayer-free Silica-carbon Template Membranes from Pectin and P123 for Water Desalination MATEC Web of Conferences 2019 [cited 280; 3017 ]. Available from: https://doi.org/10.1051/matecconf/201928003017. [Google Scholar]
  14. M.C. Duke, J.C.D.d.C., D.D. Do, P.G. Gray, G.Q. Lu, Hydrothermally robust molecular sieve silica for wet gas separation. Adv. Funct. Mater, 2006. 16: p. 1215–1220. [Google Scholar]
  15. M. Elma, D.K.W., C. Yacou, J. Motuzas, J.C. Diniz da Costa, High Performance interlayer-free mesoporous cobalt oxide silica membranes for desalination application. Journal of Desalination. Journal of Desalination, 2015b. 365: p. 308-315. [CrossRef] [Google Scholar]
  16. Elma, M. and H. Setyawan, Synthesis of Silica Xerogels Obtained in Organic Catalyst via Sol Gel Route. IOP Conference Series: Earth and Environmental Science, 2018. 175(1): p. 012008. [CrossRef] [Google Scholar]
  17. M. Elma, H.S., Synthesis of Silica Xerogels Obtained in Organic Catalyst via Sol Gel Route. IOP Conference Series : Earth and Environmental Science, 2018. [Google Scholar]
  18. M. Elma, D.K.W., C. Yacou, J.C.Diniz da Costa, Interlayer-free P123 carbonised templete silica membranes for desalination with educed salt concentration polarisation. J. Membr. Sci, 2015a. 475: p. 376-383. [CrossRef] [Google Scholar]
  19. Y. T. Chua, C.X.C.L., F. Kleitz, and S. Smart, Sythesis of mesoporous carbon-silica nanocomposite water-treatment membranes using a triconstituent co-assembly method. J. Mater. Chem. A., 2015. 00: p. 1-3. [Google Scholar]
  20. Wojdyr, M., FityK: A genral-purpose peak fitting program. J. Appl. Crystallogr, 2010. 43: p. 1126-1128. [Google Scholar]
  21. Socrates, G., Infrared and Raman Characteristics Group Frequencies: Tables and Charts. 3rd ed. 2001, West Sussex: John Wiley & Sons Ltd. [Google Scholar]
  22. M.Elma, R.A., Erdina, Syarifah, Dewi.S,Norlian, Dhimas, Fabication of interlayer-free silica-based membranes-effect of low calcination temperature using an organo-catalyst. Membrane Technology, 2019: p. 6-10. [Google Scholar]
  23. Pratiwi, A.E., et al., Innovation of Carbon from Pectin Templated in Fabrication of Interlayer-free Silica-Pectin Membrane. Jurnal Kimia Sains dan Aplikasi, 2019. 22(3): p. 93-98. [CrossRef] [Google Scholar]
  24. Elma, M., et al., Fabrication of interlayer-free silica-based membranes – effect of low calcination temperature using an organo-catalyst. Membrane Technology, 2019. 2019(2): p. 6-10. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.