Open Access
Issue
E3S Web Conf.
Volume 149, 2020
Regional Problems of Earth Remote Sensing (RPERS 2019)
Article Number 02003
Number of page(s) 7
Section Models and Methods of Remote Sensing Data Processing
DOI https://doi.org/10.1051/e3sconf/202014902003
Published online 05 February 2020
  1. Kashkin VB, Sukhinin AI (2008) Digital processing of aerospace images. Krasnoyarsk: SFU. 278 p. (In Russian) [Google Scholar]
  2. Salomon D. (2007) Data compression. The complete reference. Springer-Verlag. 1118 p. [Google Scholar]
  3. Sayood K. (2006) Introduction to Data Compression. USA. Universitet Nebraska. Morgan Kaufmann Publishers is an imprint of Elsevier. San Francisco, CA 94111. 703 p. [Google Scholar]
  4. William K. Pratt. (2001) Digital Image Processing: PIKS Inside, Third Edition. John Wiley & Sons, Inc, 738 p. [Google Scholar]
  5. Gashnikov MV, Glumov N.I. (2016) On-board processing of hyperspectral data in Earth remote sensing systems on the basis of hierarchical compression. Computer Optics. vol. 40. no 4. pp. 543-551. (In Russian). [Google Scholar]
  6. Gashnikov M.V. (2017) Minimization of the entropy of post-interpolation residues during image compression based on hierarchical grid interpolation), Computer Optics. vol. 41. no. 2. pp. 266-275. (In Russian). [CrossRef] [Google Scholar]
  7. Petrov E.P., Hanna N.L., Suhih P.N. (2015) Method of fast compression of images without losses. Machine learning and data analysis. vol. 1. no.12. pp.1762-1770. (In Russian). [CrossRef] [Google Scholar]
  8. Petrov E.P., Harina N.L., Suhih P.N. (2016) Method of compression of multi-bit satellite images without losses. Modern problems of remote sensing of the earth. vol. 13. no. 2. pp. 203-210. (In Russian). [Google Scholar]
  9. Petrov E.P., Harina N.L., Suhih P.N. (2016) The method of image compression in ERS systems without losses. Bulletin of the Samara State Aerospace University named after Academician S.P. Queen. vol. 15. no.2. pp. 183-189. (In Russian). [Google Scholar]
  10. Sarinova A., Zamjatin A. and Cabral P. Lossless compression of hyperspectral images with pre-byte processing and intra-bands. Dyna (Colombia). - 2015.-Vol. 82 (190).- pp. 166-172. [Google Scholar]
  11. Zamjatin A.V., Sarinova A.Zh. (2017) Algorithm for compressing hyperspectral aerospace images using mathematical processing and taking into account interband correlation. Materials of the IV International Scientific Conference “Regional Problems of Earth Remote Sensing”. pp.157-160. (In Russian). [Google Scholar]
  12. Sergeev V.V. (2006) Analysis and Processing of Images Obtained from Earth Observations from Space. Computer Optics. no.29. pp.41-44. (In Russian). [Google Scholar]
  13. Gashnikov M.V., Glumov N.I. (2014) Hierarchical GRID interpolation under hyperspectral images compression Optical Memory and Neural Networks. vol. 23(4). pp.246-253. [CrossRef] [Google Scholar]
  14. Gashnikov MV, Glumov NI, Kuznetsov AV, Mitekin VA, Myasnikov VV, Sergeev VV. (2016) Hyperspectral remote sensing data compression and protection. Computer Optics. vol. 41. no. 5. pp.689-712. [CrossRef] [Google Scholar]
  15. Gashnikov M.V., Glumov N.I. (2016) Hyperspectral image compression for transmission over communication channel. Information Technology and Nanotechnology. pp.334-339. [Google Scholar]
  16. Hongda Shen, W. David Pan. (2017) Predictive Lossless Compression of Regions of Interest in Hyperspectral Images With No-Data Regions. IEEE. Transactions on geoscience and remote sensing, vol. 55. no. 1.pp.173-182. [CrossRef] [Google Scholar]
  17. Yuan L., Jianping L., Ke G. (2012) Lossless compression of hyperspectral images using hybrid context prediction. Optics Express. vol. 20. no.7. pp. 8199-8206 [CrossRef] [PubMed] [Google Scholar]
  18. Changguo, Li., Ke G. (2014) Lossless Compression of Hyperspectral Images Using Three-Stage Prediction with Adaptive Search Threshold. International Journal of Signal Processing, Image Processing and Pattern Recognition. vol.7. no.3. pp. 305-316. [Google Scholar]
  19. Mahendran M., Jayavathi S.D. (2016) Compression of Hyperspectral Images Using PCA with Lifting Transform//International Conference on Emerging Engineering Trends and Science. P.68-73. [Google Scholar]
  20. Sepehrband F., Ghamisi P., Mohammadzadeh A., Sahebi M.P., Choupan J. (2011) Efficient Adaptive Lossless Compression of Hyperspectral Data using Enhanced DPCM. International Journal of Computer Applications. vol. 35. no.4. pp. 6-11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.