Open Access
Issue
E3S Web Conf.
Volume 158, 2020
2019 7th International Conference on Environment Pollution and Prevention (ICEPP 2019)
Article Number 06003
Number of page(s) 7
Section Environmental Economy and Management
DOI https://doi.org/10.1051/e3sconf/202015806003
Published online 23 March 2020
  1. J. Chen and Liu Y., Coupled natural and human systems: a landscape ecology perspective . Landscape Ecol. 29 (2014) 1641-1644. [CrossRef] [Google Scholar]
  2. M. Burgi, Hersperger A.M., and Schneeberger N., Driving forces of landscape change - current and new directions. Landscape Ecology. 19 (2004) 857-868. [CrossRef] [Google Scholar]
  3. MEA, Millennium ecosystem assessment synthesis. Island Press (2005). [Google Scholar]
  4. Y. Yang, et al., Mapping ecosystem services bundles to detect high- and low-value ecosystem services areas for land use management. Journal of Cleaner Production. (2019). [Google Scholar]
  5. C. Kremen, et al., Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10 (2007) 299-314. [CrossRef] [Google Scholar]
  6. O. Shelef, et al., Land use Change, a Case Study from Southern Italy: General Implications for Agricultural Subsidy Policies. Land Degradation & Development. 27 (2016) 868-870. [Google Scholar]
  7. X. Huang and Ma J.X., Changes in the ecosystem service values of typical river basins in arid regions of Northwest China. Ecohydrology. 6 (2013) 1048-1056. [Google Scholar]
  8. Y. Bai, Xu H., and Ling H., Eco-service value evaluation based on eco-economic functional regionalization in a typical basin of northwest arid area, China. Environmental Earth Sciences. 71 (2014) 3715-3726. [Google Scholar]
  9. B. Fu, et al., Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indicators. 69 (2016) 873-881. [CrossRef] [Google Scholar]
  10. M. Baude, Meyer B.C., and Schindewolf M., Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Sci. Total Environ. 659 (2019) 1526-1536. [CrossRef] [PubMed] [Google Scholar]
  11. R.S. de Groot, et al., Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7 (2010) 260-272. [CrossRef] [Google Scholar]
  12. H. Wang, et al., The influence of climate change and human activities on ecosystem service value. Ecol. Eng. 87 (2016) 224-239. [Google Scholar]
  13. M. Kindu, et al., Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 547 (2016) 137-147. [CrossRef] [PubMed] [Google Scholar]
  14. R. Hoyer and Chang H.J., Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Applied Geography. 53 (2014) 402-416. [Google Scholar]
  15. M. Marquès, et al., The impact of climate change on water provision under a low flow regime: A case study of the ecosystems services in the Francoli river basin. 263 (2013) 224-232. [Google Scholar]
  16. N.R. Samal, et al., A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change. Ecol. Soc. 22 (2017). [Google Scholar]
  17. M.A.A. Ahmed, et al., Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manage. 199 (2017) 158-171. [Google Scholar]
  18. S.A. Foster and Gorr W.L., An adaptive filter for estimating spatially-varying parameters: application to modeling police hours spent in response to calls for service. Management Science. 32 (1986) 878-889. [Google Scholar]
  19. A.D. Cliff and Ord K., Spatial processes, models and applications. Journal of the Royal Statistical Society. 147 (1981). [Google Scholar]
  20. C. Brunsdon, Fotheringham A.S., and Charlton M.E., Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis. 28 (1996) 281-298. [Google Scholar]
  21. Fotheringham and Stewart A., Trends in quantitative methods I: stressing the local. Progress in Human Geography. 21 (1997) 88-96. [Google Scholar]
  22. Z. Zhenya, et al., Scenario simulation of ecosystem service value based on landscape transformation. Fresenius Environ. Bull. 26 (2017) 6812-6824. [Google Scholar]
  23. J. Lu and Zhang L.J.F.S., Modeling and Prediction of Tree Height-Diameter Relationships Using Spatial Autoregressive Models. 57 (2011) 252-264. [Google Scholar]
  24. P. Laterra, Orue M.E., and Booman G.C., Spatial complexity and ecosystem services in rural landscapes. Agriculture Ecosystems & Environment. 154 (2012) 56-67. [CrossRef] [Google Scholar]
  25. A.K. Fremier, et al., Understanding Spatiotemporal Lags in Ecosystem Services to Improve Incentives. Bioscience. 63 (2013) 472-482. [Google Scholar]
  26. Y.C. Weng, Spatiotemporal changes of landscape pattern in response to urbanization. Landscape and Urban Planning. 81 (2007) 341-353. [Google Scholar]
  27. J.T. Kerr and Ostrovsky M., From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution. 18 (2003) 299-305. [Google Scholar]
  28. Z.L. Tang, et al., Impacts of Land-Use and Climate Change on Ecosystem Service in Eastern Tibetan Plateau, China. Sustainability. 10 (2018). [Google Scholar]
  29. M. Cheng, et al., Ecosystem Spatial Changes and Driving Forces in the Bohai Coastal Zone. Int. J. Env. Res. Public Health. 16 (2019). [Google Scholar]
  30. Y. Liu, Bi J., and Lv J.S., Future Impacts of Climate Change and Land Use on Multiple Ecosystem Services in a Rapidly Urbanizing Agricultural Basin, China. Sustainability. 10 (2018). [Google Scholar]
  31. B.C. Pijanowski, et al., Addressing the interplay of poverty and the ecology of landscapes: a Grand Challenge Topic for landscape ecologists? 25 (2010) 5-16. [Google Scholar]
  32. S.L. Su, et al., Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Applied Geography. 34 (2012) 295-305. [CrossRef] [Google Scholar]
  33. E.M. Costa, et al., Mapping Soil Organic Carbon and Organic Matter Fractions by Geographically Weighted Regression. Journal of Environmental Quality. 47 (2018) 718-725. [CrossRef] [PubMed] [Google Scholar]
  34. H.F. Teng, et al., Modelling and mapping soil erosion potential in China. Journal of Integrative Agriculture. 18 (2019) 251-264. [CrossRef] [Google Scholar]
  35. R. Sawut, et al., Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area. International Journal of Applied Earth Observation and Geoinformation. 73 (2018) 14-25. [CrossRef] [Google Scholar]
  36. C.X. Liu, Wu X.L., and Wang L., Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou Reservoir area, China. Applied Geography. 105 (2019) 1-14. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.