Open Access
Issue
E3S Web Conf.
Volume 160, 2020
The 6th International Conference on Renewable Energy Technologies (ICRET 2020)
Article Number 01004
Number of page(s) 5
Section Power Engineering and Smart Grid
DOI https://doi.org/10.1051/e3sconf/202016001004
Published online 25 March 2020
  1. Brange, L., Englund, J. & Lauenburg, P. Prosumers in district heating networks - A Swedish case study. Appl. Energy 164, 492-500 (2016). [Google Scholar]
  2. Guelpa, E., Barbero, G., Sciacovelli, A. & Verda, V. Peak-shaving in district heating systems through optimal management of the thermal request of buildings. Energy 137, 706-714 (2017). [CrossRef] [Google Scholar]
  3. Hou, J. et al. Implementation of expansion planning in existing district energy system: A case study in China. Appl. Energy 211, 269-281 (2018). [Google Scholar]
  4. Tunzi, M., Boukhanouf, R., Li, H., Svendsen, S. & Ianakiev, A. Improving thermal performance of an existing UK district heat network: A case for temperature optimization. Energy Build. 158, 1576-1585 (2018). [Google Scholar]
  5. Delangle, A., Lambert, R.S.C., Shah, N., Acha, S. & Markides, C.N. Modelling and optimising the marginal expansion of an existing district heating network. Energy 140, 209-223 (2017). [CrossRef] [Google Scholar]
  6. Vivian, J. et al. Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps. Energy (2018). 10.1016/j.energy.2018.04.081 [Google Scholar]
  7. Junussova, L.R., Abildinova, S.K., Aliyarova, M.B., Chicherin, S.V. & Junussov, T.J. The means to improve water treatment and to enhance power engineering performance of the water source heat pump. Energ. Proc. CIS High. Educ. Institutions Power Eng. Assoc. 61, 372-380 (2018). [Google Scholar]
  8. Sayegh, M.A. et al. Heat pump placement, connection and operational modes in European district heating. Energy Build. 166, 122-144 (2018). [Google Scholar]
  9. Zarin Pass, R., Wetter, M. & Piette, M.A. A thermodynamic analysis of a novel bidirectional district heating and cooling network. Energy 144, 20-30 (2018). [CrossRef] [Google Scholar]
  10. Andrić, I., Fournier, J., Lacarrière, B., Le Corre, O. & Ferrão, P. The impact of global warming and building renovation measures on district heating system techno-economic parameters. Energy (2018). 10.1016/j.energy.2018.03.027 [Google Scholar]
  11. Im, Y.-H. & Liu, J. Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model. Energy 153, 988-999 (2018). [CrossRef] [Google Scholar]
  12. Wang, H., Meng, H. & Zhu, T. New model for onsite heat loss state estimation of general district heating network with hourly measurements. Energy Convers. Manag. 157, 71-85 (2018). [Google Scholar]
  13. Ayele, G.T., Haurant, P., Laumert, B. & Lacarrière, B. An extended energy hub approach for load flow analysis of highly coupled district energy networks: Illustration with electricity and heating. Appl. Energy 212, 850-867 (2018). [Google Scholar]
  14. Chicherin, S. Low-temperature district heating distributed from transmission-distribution junctions to users: energy and environmental modelling. Energy Procedia 147, 382-389 (2018). [Google Scholar]
  15. Chicherin, S., Junussova, L. & Junussov, T. Minimizing the supply temperature at the district heating plant - dynamic optimization. E3S Web Conf. 118, (2019). 10.1051/e3sconf/201911802004 [CrossRef] [EDP Sciences] [Google Scholar]
  16. Abdikarimov, M.N., Turgumbayeva, R.K., Sagintaeva, S.S., Mussabekov, R., & Abildinova, S.K. (2019). Heatfireprotection Polymer Coatings on the Basis of EPDM-40 with Additives. Key Engineering Materials, 816, 356-361. 10.4028/www.scientific.net/kem.816.356. [CrossRef] [Google Scholar]
  17. Belilovets, V.I., & Lipovka, Y.L. (2018). DESIGNING UNDERGROUND TRENCHLESS THERMALLY PRE-STRESSED HEAT SUPPLY PIPELINES WITH EXPANSION JOINTS. BULLETIN OF THE TOMSK POLYTECHNIC UNIVERSITY-GEO ASSETS ENGINEERING, 329(7), 57-69. [Google Scholar]
  18. Chicherin, S., Volkova, A. & Latõšov, E. GIS-based optimisation for district heating network planning. Energy Procedia 149, 635-641 (2018). [Google Scholar]
  19. Junussova, L. & Chicherin, S. Improving a water treatment and a heating performance of the water-to-water heat pump: misallocation and available solutions. IOP Conf. Ser. Earth Environ. Sci. 288, 12092 (2019). 10.1088/1755-1315/288/1/012092 [CrossRef] [Google Scholar]
  20. Junussova, L.R. & Chicherin, S.V. Method of Aluminum Salts Extraction from Wastewater Using Desalination Technology: Syr Darya River Case Study. IOP Conf. Ser. Earth Environ. Sci. 288, 012008 (2019). 10.1088/1755-1315/288/1/012008 [CrossRef] [Google Scholar]
  21. (Thanos) Bourtsalas, A.C., Seo, Y., Tanvir Alam, M. & Seo, Y.-C. The status of waste management and waste to energy for district heating in South Korea. Waste Manag. 85, 304-316 (2019). [PubMed] [Google Scholar]
  22. von Rhein, J., Henze, G.P., Long, N. & Fu, Y. Development of a topology analysis tool for fifth-generation district heating and cooling networks. Energy Convers. Manag. 196, 705-716 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.