Open Access
Issue
E3S Web Conf.
Volume 161, 2020
International Conference on Efficient Production and Processing (ICEPP-2020)
Article Number 01001
Number of page(s) 3
DOI https://doi.org/10.1051/e3sconf/202016101001
Published online 15 April 2020
  1. A. Bahadori, Oil and Gas Pipelines and Piping Systems, 269-284 (2017). DOI: 10.1016/B978-0-12-803777-5.00010-1. [CrossRef] [Google Scholar]
  2. T. Nguyen, T. Fülöp, P. Breuhaus, B. Elmegaard, Life performance of oil and gas platforms: Site integration and thermodynamic evaluation, Energy, 73, 282-301 (2014). DOI: 10.1016/j.energy.2014.06.021. [CrossRef] [Google Scholar]
  3. T. Morosuk, G. Tsatsaronis, Splitting physical exergy: Theory and application, Energy, 167, 698-707. DOI 10.1016/J.ENERGY.2018.10.090. [CrossRef] [Google Scholar]
  4. G. Chehade, I. Dincer, Exergy analysis and assessment of a new integrated industrial based energy system for power, steam and ammonia production, Energy, 116277, 2019. DOI: 10.1016/J.ENERGY.2019.116277. [CrossRef] [Google Scholar]
  5. J. Rashidi, C. Yoo, Exergy, exergo-economic, and exergy-pinch analyses (EXPA) of the kalina power-cooling cycle with an ejector, Energy, 155, 504-520 (2018). DOI: 10.1016/J.ENERGY.2018.04.178. [CrossRef] [Google Scholar]
  6. E. Trinklein, G. Parker, T. McCoy, Modeling, optimization, and control of ship energy systems using exergy methods, Energy, 191, 116542. DOI: 10.1016/J.ENERGY.2019.11. [CrossRef] [Google Scholar]
  7. D. Olsen, Y. Abdelouadoud, P. Liem and B. Wellig, The Role of Pinch Analysis for Industrial ORC Integration, Energy Procedia, 129, 74-81 (2017). DOI: 10.1016/J.EGYPRO.2017.09.193. [Google Scholar]
  8. A. Dimian, C. Bildea, A. Kiss, Pinch Point Analysis, Computer Aided Chemical Engineering, 35, 525-564 (2014). DOI 10.1016/B978-0-444-62700-1.00013-9. [CrossRef] [Google Scholar]
  9. I. Dincer, M. Rosen, Exergy, Elsevier Ltd (2007). DOI: 10.1016/B978-0-08-044529-8.X5001-0. [Google Scholar]
  10. E.A. Yushkova, V.A. Lebedev, Exergy analysis of the boiler using the pinch method, News of higher educational institutions, ENERGY PROBLEMS, 21, 4, 58-65 (2019). DOI: 10.30724/1998-9903-2019-21-4-58-65. [Google Scholar]
  11. E.A. Yushkova, V.A. Lebedev, Exergy pinch analysis of the primary oil distillation unit, J. Phys.: Conf. Ser., 1399, 044072. DOI:10.1088/1742-6596/1399/4/044072. [CrossRef] [Google Scholar]
  12. T.N. Mitusova, N.K. Kondrasheva, M.M. Lobashova, M.A. Ershov, V.A. Rudko, Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels, Journal of Mining Institute, 228, 722-725 (2017). DOI: 10.25515/PMI.2017.6.722. [Google Scholar]
  13. N.K. Kondrasheva, V.A. Rudko, D.O. Kondrashev, R.R. Konoplin, K.I. Smyshlyaeva, V.S. Shakleina, Functional influence of depressor and depressor-dispersant additives on marine fuels and their distillates components, Petroleum Science and Technology, 36, 2099-2105 (2018). DOI: 10.1080/10916466.2018.1533858. [Google Scholar]
  14. G. Priya, S. Bandyopadhyay, Multiple objectives Pinch Analysis, Resources, Conservation and Recycling, 119, 128-141 (2017). DOI: 10.1016/j.resconrec.2016.02.005. [CrossRef] [Google Scholar]
  15. R. Anantharaman, O. Abbas and T. Gundersen, Energy Level Composite Curves - A new graphical methodology for the integration of energy intensive processes, Applied Thermal Engineering, 26, 13, 1378-1384 (2006). DOI: 10.1016/j.applthermaleng.2005.05.029. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.