Open Access
Issue |
E3S Web Conf.
Volume 165, 2020
2020 2nd International Conference on Civil Architecture and Energy Science (CAES 2020)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 6 | |
Section | Geology, Mapping, and Remote Sensing | |
DOI | https://doi.org/10.1051/e3sconf/202016503010 | |
Published online | 01 May 2020 |
- Lague, D., Brodu, N., and Leroux, J. (2013). “Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z).” ISPRS Journal of Photogrammetry and Remote Sensing. DOI: 10.1016/j.isprsjprs.2013.04.009 [Google Scholar]
- Sallenger et al., 2003 Evaluation of airborne topographic LIDAR for quantifying beach changes, Journal of Coastal Research 19(1):125-133. [Google Scholar]
- Zulkipli, M.A., and Tahar, K.N. (2018). “Multirotor UAV-Based Photogrammetric Mapping for Road Design.” International Journal of Optics. DOI: 10.1155/2018/1871058. [Google Scholar]
- Aber, J., Marzolff, I., and Ries, J. (2010). Small-format aerial photography: Principles, techniques, and geoscience applications. The Photogrammetric Record. [Google Scholar]
- Chao, H., Cao, Y., and Chen, Y. (2010). “Autopilots for small unmanned aerial vehicles: A survey.” International Journal of Control, Automation, and Systems. DOI: 10.1007/s12555-010-0105-z. [Google Scholar]
- Graça, N., Mitishita, E., and Gonçalves, J. (2014). “Photogrammetric mapping using the unmanned aerial vehicle.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. [Google Scholar]
- Saad, A.M., and Tahar, K.N. (2019). “Identification of rut and pothole by using a multirotor unmanned aerial vehicle (UAV).” Measurement: Journal of the International Measurement Confederation. DOI: 10.1016/j.measurement.2019.01.093. [Google Scholar]
- Küng, O., Strecha, C., Beyeler, A., Zufferey, J.-C., Floreano, D., Fua, P., and Gervaix, F. (2012). “The accuracy of automatic photogrammetric techniques on ultra-light UAV imagery.” isprs - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. [Google Scholar]
- Liba, N., and Berg-Jürgens, J. (2015). “Accuracy of orthomosaic generated by different methods in an example of UAV platform MUST Q.” IOP Conference Series: Materials Science and Engineering.DOI: 10.1088/1757-899X/96/1/012041. [Google Scholar]
- Jaud, M., Passot, S., Le Bivic, R., Delacourt, C., Grandjean, P., and Le Dantec, N. (2016). “Assessing the accuracy of high-resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions.” Remote Sensing. DOI:10.3390/rs8060465. [Google Scholar]
- Sona, G., Pinto, L., Pagliari, D., Passoni, D., and Gini, R. (2014). “Experimental analysis of different software packages for orientation and digital surface modeling from UAV images.” Earth ScienceInformatics.DOI:10.1007/s12145-01301422 [Google Scholar]
- Colomina, I., and Molina, P. (2014). “Unmanned aerial systems for photogrammetry and remote sensing: A review.” ISPRS Journal of Photogrammetry and Remote Sensing. DOI: 10.1016/j.isprsjprs.2014.02.013. [Google Scholar]
- Nex, F. & Remondino, F., 2012. UAV for 3D mapping applications: a review. Applied Geomatics. DOI: 10.1016/j.jas.2010.10.022. [Google Scholar]
- Agisoft LLC. (2018). Agisoft PhotoScan User Manual: Professional Edition, Version 1.4. Agisoft LLC. [Google Scholar]
- Gross, J.W. (2015). “A Comparison of Orthomosaic Software for Use with Ultra-High Resolution Imagery of a Wetland Environment.” Center for Geographic Information Science and Geography Department. [Google Scholar]
- Ali, A. (2017). “Images classification and feature extraction by using unmanned aerial vehicles (UAV’s).” International Journal of Applied Engineering Research. [Google Scholar]
- Zhou, H., Kong, H., Wei, L., Creighton, D., and Nahavandi, S. (2017). “On Detecting Road Regions in a Single UAV Image.” IEEE Transactions on Intelligent Transportation Systems. DOI: 10.1109/TITS.2016.2622280. [Google Scholar]
- Snavely, K.N., 2008. Scene Reconstruction and Visualization from Internet Photo Collections, Washington: University of Washington. [Google Scholar]
- “ASPRS Positional Accuracy Standards for Digital Geospatial Data.” (2015). Photogrammetric Engineering & Remote Sensing. DOI: 10.1016/S0099-1112(15)30334-7. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.