Open Access
Issue
E3S Web Conf.
Volume 165, 2020
2020 2nd International Conference on Civil Architecture and Energy Science (CAES 2020)
Article Number 03017
Number of page(s) 4
Section Geology, Mapping, and Remote Sensing
DOI https://doi.org/10.1051/e3sconf/202016503017
Published online 01 May 2020
  1. Chen Y.Y., Duan S.B., Ren H.Z., et al. Algorithm development for land surface temperature retrieval:Application to Chinese Gaofen-5 data. Remote Sensing, 2017, 9: 161. [Google Scholar]
  2. Fan X.W., Tang B.H., Wu H., et al. A three-channel algorithm for retrieving night-time land surface temperature from MODIS data under thin cirrus clouds. International Journal of Remote Sensing,2015, 36: 4836-4863. [Google Scholar]
  3. Duan S.B., Li Z.L., Tang B.H., et al. Generation of a time-consistent land surface temperature product from MODIS data. Remote Sensing of Environment, 2014, 140: 339-349. [Google Scholar]
  4. Anderson M.C., Norman J.M., Kustas W.P., Houborg R, Starks P J and Agam N. 2008. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112(12): 4227-4241 [DOI: 10.1016/j.rse.2008.07.09] [Google Scholar]
  5. Zhang T, Barry R.G., Gilichinsky D et al. An ampil signal of climatic change in 50 temperature during the last century at Irkutsk, Russia [J]. Climate Change, 2001, 49:41-76. [Google Scholar]
  6. Hansen J, Ruedy R, Sato M and Lo K. 2010. Global surface temperature change. Reviews of Geophysics, 48(4): G4004 [DOI: 10.1029/2010RG000345] [Google Scholar]
  7. Zhao L. Lee X.H., Schultz N.M. A wedge strategy for mitigation of urban warming in future climate scenarios. Atmospheric Chemistry and Physics, 2017, 17: 9067-9080. [Google Scholar]
  8. Kogan F.N. Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 2001, 82: 1949-1964. [Google Scholar]
  9. Tarpley J.D. Monthly evapotranspiration from satellite and conventional meteorological observations. Journal of Climate, 2009, 7: 704-714. [Google Scholar]
  10. Feng X.G. Remote sensing study on the evolution and genesis of urban heat island effect:. Xi 'an: shaanxi normal university, 2011. [Google Scholar]
  11. Zhang J, Zhang X.P, wang xiaoyun, et al. Multi-scale temperature analysis and heat island effect in Beijing [J]. Geography of arid region, 2010,33 (1) : 51-58. [Google Scholar]
  12. Sun y, wang Y.W. numerical simulation of urban heat island and local circulation characteristics under complex terrain [J]. Chinese journal of atmospheric sciences, 2019, 42 (2) : 280-292. [Google Scholar]
  13. Bao W.J. Spatiotemporal characteristics and evolution of urban heat island in Shanghai:. Shanghai: fudan university, 2010. [Google Scholar]
  14. Bredehoeft J.D., Papadopulos I.S. Rates of vertical ground-water movement estimated from the Earth’s thermal profile [J]. Water Resources Research, 1965, (2): 325-328. [Google Scholar]
  15. Tang C.C, Wang J.X, zhang jian. A preliminary method for predicting spring precipitation field by using surface temperature anomaly of 0.8 m in winter [J]. Plateau meteorology, 1987, 6 (3) : 244-255. [Google Scholar]
  16. Xie D.Y. Geothermal characteristics of northern tarim basin [J]. Journal of China university of geosciences, 1993, 18 (5) : 627-633. [Google Scholar]
  17. Zeng Y, Huang W, Zhan F.B., et al. Study on the urban heat island effects and its relationship with surface biophysical characteristics using MODIS imageries[J]. Geo-spatial Information Science, 2010, 13(1):1-7. [Google Scholar]
  18. Becker, F. The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J]. International Journal of Remote Sensing, 1987, 8(10):1509-1522. [Google Scholar]
  19. Shi J., Jiang L., Zhang L., et al. Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44: 3145-3153. [Google Scholar]
  20. Gong R. Soil moisture active and passive detection satellite. Satellite applications, 2015, 81. [Google Scholar]
  21. Ermida S.L., Jiménez C., Prigent C., et al. Inversion of AMSR-E observations for land surface temperature estimation, Global comparison with infrared satellite temperature. Journal of Geophysical Research: Atmospheres, 2017. [Google Scholar]
  22. Jia Y.Y, Li Z.L. Research progress of surface temperature inversion based on passive microwave remote sensing data. Advances in geosciences, 2006, 25:96-105. [Google Scholar]
  23. Han X.Z. Research on passive microwave remote sensing inversion algorithm for surface temperature under clouds:. Chinese academy of agricultural sciences, 2018. [Google Scholar]
  24. Zhou J., Dai F., Zhang X., et al. Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass.International Journal of Applied Earth Observations and Geoinformation, 2015, 34: 35-50. [Google Scholar]
  25. Neale C.M.U., Mcfarland M.J., Chang K. Land-surface-type classification using microwave brightness temperatures from the Special Sensor Microwave/Imager. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28: 829-838. [Google Scholar]
  26. Li W.B, Zhu Y.J. SSM/I remote sensing of ground temperature in eastern China. Advances in natural science, 1998, 305-313. [Google Scholar]
  27. Mao K.B, Shi J.C, Li Z.L et al. A physical statistical algorithm for surface temperature inversion based on passive microwave AMSRE data. Sci China, 2006, 36:1170-1176. [Google Scholar]
  28. Mialon A., Royer A., Fily M., et al. Daily microwave-derived surface temperature over Canada/Alaska. Journal of Applied Meteorology and Climatology, 2008, 46: 591-604. [Google Scholar]
  29. Guha A., Lakshmi V. Use of the scanning multichannel microwave radiometer (SMMR) to retrieve soil moisture and surface temperature over the central United States. IEEE Transactions on Geoscience and Remote Sensing 2004, 42: 1482-1494. [Google Scholar]
  30. Zurk L.M., Davis D., Njoku E.G., et al. Inversion of parameters for semiarid regions by a neural network. IEEE International Geoscience and Remote Sensing Symposium, 1992, 2: 1075-1077. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.