Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 05003
Number of page(s) 8
Section Sustainable Computing
DOI https://doi.org/10.1051/e3sconf/202016605003
Published online 22 April 2020
  1. B. Andò, S. Graziani, M.G. Xibilia, A soft sensor for the estimation of ionic electroactive actuator motion based on deep learning, in 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 [Google Scholar]
  2. M.G. Xibilia, N. Gemelli, G. Consolo, Input variables selection criteria for data-driven Soft Sensors design, in 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), pp. 362–367 [Google Scholar]
  3. G. Napoli, M.G. Xibilia, Soft Sensor design for a Topping process in the case of small datasets. Computers & chemical engineering 35(11), 2447–2456 (2011) [Google Scholar]
  4. R. Caponetto, G. Dongola, A. Gallo, M. G. Xibilia, FPGA Implementation of a soft sensor for the estimation of the freezing point of kerosene, in ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 151–158 [Google Scholar]
  5. L. Fortuna, S. Graziani, M.G. Xibilia, Soft sensors for product quality monitoring in debutanizer distillation columns. Control Engineering Practice 13, 499–508 (2005) [Google Scholar]
  6. L. Fortuna, S. Graziani, M.G. Xibilia, Virtual instruments in refineries. IEEE Instrumentation & Measurement Magazine 8, 26–34 (2005) [Google Scholar]
  7. S. Graziani, M.G. Xibilia, A deep learning based soft sensor for a sour water stripping plant, in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 [Google Scholar]
  8. B. Andò, S. Graziani, M.G. Xibilia, Low-order nonlinear finite-impulse response soft sensors for ionic electroactive actuators based on deep learning. IEEE Transactions on Instrumentation and Measurement 68(5), 1637–1646 (2018) [Google Scholar]
  9. S. Graziani, M.G. Xibilia, Design of a soft sensor for an industrial plant with unknown delay by using deep learning, in 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-6 [Google Scholar]
  10. L. Fortuna, S. Graziani, M.G. Xibilia, Comparison of soft-sensor design methods for industrial plants using small data sets. IEEE Transactions on Instrumentation and Measurement 58(8), 2444–2451 (2009) [Google Scholar]
  11. A. Di Bella, L. Fortuna, S. Graziani, G. Napoli, M. G. Xibilia, Soft sensor design for a sulfur recovery unit using genetic algorithms, in 2007 IEEE International Symposium on Intelligent Signal Processing, pp. 1–6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.