Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 05004
Number of page(s) 6
Section Sustainable Computing
DOI https://doi.org/10.1051/e3sconf/202016605004
Published online 22 April 2020
  1. Market Estimates & Trend Analysis. Automated Guided Vehicles Market (Grand New Research Report, 2016), https://www.grandviewresearch.com/industry-analysis/automated-guided-vehicle-agvmarket. Accessed 22 Aug 2018 [Google Scholar]
  2. A.C. Pereira, F. Romero, A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 13, 1206–1214 (2017). doi:10.1016/j.promfg.2017.09.032 [Google Scholar]
  3. E’nsor – Egemin Navigation System On Robot. DEMATIC (2018), http://egeminusa.com/automated-guided-vehicles/software/ensor/. Accessed 14 Feb 2019 [Google Scholar]
  4. N. Amin, M. Borschbach, Quality of obstacle distance measurement using Ultrasonic sensor and precision of two Computer Vision-based obstacle detection approaches. IC-SSS 1-6 (2015). doi:10.1109/SMARTSENS.2015.7873595. [Google Scholar]
  5. M. Martínez, J. Martínez, J. Morales, Motion Detection from Mobile Robots with Fuzzy Threshold Selection in Consecutive 2D Laser Scans. Electronics 4(1), 82–93 (2015). doi:10.3390/electronics4010082 [Google Scholar]
  6. D. Teso-Fz-Betoño, E. Zulueta, U. FernandezGamiz, I. Aramendia, I. Uriarte, A Free Navigation of an AGV to a Non-Static Target with Obstacle Avoidance. Electronics 8(2), 159 (2019). doi:10.3390/electronics8020159. [Google Scholar]
  7. H. Tang, S. Shi, P. Huang, D. Wang, J. Zhou, PID Control of Magnetic Navigation Differential AGV Trajectory. DEStech Transactions on Engineering and Technology Research, 500–506 (2017). doi:10.12783/dtetr/apop2017/18774 [Google Scholar]
  8. A. Al-Mayyahi, W. Wang, P. Birch, Adaptive NeuroFuzzy Technique for Autonomous Ground Vehicle Navigation. Robotics 6, 349–370 (2014). doi:10.3390/robotics3040349. [CrossRef] [Google Scholar]
  9. A.V. Koval’, Simulation of gravimetric measurements by gyroscopic integrator of linear accelerations. Gyroscopy and Navigation 6(1), 344–347 (2015). doi:10.1134/S2075108715040070 [CrossRef] [Google Scholar]
  10. O. Bezvesilna, M. Kamiński, Gravimeters of aviation gravimetric system: Classification, comparative analysis, prospects. Advances in Intelligent Systems and Computing 550, 496–504 (2017). doi:10.1007/978-3-319-54042-9_48 [CrossRef] [Google Scholar]
  11. O. Bezvesilna, A. Tkachuk, L. Chepyuk, S. Nechai, T. Khylchenko, Introducing the principle of constructing an aviation gravimetric system with any type of gravimeter. Eastern-European Journal of Eenterprise Technologies 7(1), 45–56 (2017). doi:10.15587/1729-4061.2017.92941 [CrossRef] [Google Scholar]
  12. A. Rosebrock, Practical Python and OpenCV: An Introductory, Example Driven Guide to Image Processing and Computer Vision, 3rd edn. (PyImageSearch, 2016) [Google Scholar]
  13. CarND Project 1: Lane Lines Detection – A Complete Pipeline (Toward Data Science, 2017), https://medium.com/towards-data-science/carnd-project-1-lane-lines-detection-a-complete-pipeline6b815037d02c. Accessed 29 May 2019 [Google Scholar]
  14. G. Evensen, Data assimilation: the ensemble Kalman filter, 2nd edn. (Springer, Bergen, 2009) [Google Scholar]
  15. PyCharm (JetBrains, 2000), https://www.jetbrains.com/pycharm/. Accessed 29 May 2019 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.