Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 06006
Number of page(s) 8
Section Sustainable Materials and Technologies
DOI https://doi.org/10.1051/e3sconf/202016606006
Published online 22 April 2020
  1. A. Hacquebord, B. Lubelli, R. Robvan Hees, T. Nijland, Evaluation of Spreading and Effectiveness of Injection Products against Rising Damp in Mortar. Proc. Chem. 8, 139–149 (2013). doi:10.1016/j.proche.2013.03.019 [CrossRef] [Google Scholar]
  2. K.-S. Kwak, S.-J. Ma, S.-M. Choi, S.-K. Oh, Property Analysis of Waterproofing and Corrosion-Resistant Performance in Concrete Water Supply Facilities. J. Kor. Rec. Constr. Res. Inst. 3(2), 122–131 (2015). doi:10.14190/jrcr.2015.3.2.122 [Google Scholar]
  3. A. Margaryan, Armenian and European Methods of Tunnel Waterproofing. Int. J. Res. Chem., Met. and Civ. Eng. 3(1), 7–9 (2016). doi:10.15242/ijrcmce.ae0116208 [Google Scholar]
  4. L. Trykoz, S. Kamchatnaya, O. Pustovoitova, A. Atynian, Reinforcement of composite pipelines for multipurpose transportation. Tran. Prob. 13(1), 69–79 (2018). doi:10.21307/tp.2018.13.1.7 [Google Scholar]
  5. P. Chindaprasirt, U. Rattanasak, Improvement of durability of cement pipe with high calcium fly ash geopolymer covering. Constr. and Build. Mat. 112, 956–961 (2016). doi:10.1016/j.conbuildmat.2016.03.023 [CrossRef] [Google Scholar]
  6. A.B. Pridmore, R.P. Ojdrovic, in Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites (Elsevier BV, 2015), pp. 17–38. doi:10.1016/b978-0-85709-684-5.00002-3 [CrossRef] [Google Scholar]
  7. L. Aguiar, A. Pridmore, M. Geraghty, in Pipelines 2015 (American Society of Civil Engineers ASCE, 2015). doi:10.1061/9780784479360.115. [Google Scholar]
  8. W.A. Bruce, in Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites (Elsevier BV, 2015), pp. 61–78. doi:10.1016/B9780-85709-684-5.00004-7 [CrossRef] [Google Scholar]
  9. M. Ehsani, in Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites (Elsevier BV, 2015), pp. 39–59. doi:10.1016/B9780-85709-684-5.00003-5 [CrossRef] [Google Scholar]
  10. A.B. Pridmore, R.P. Ojdrovic, in Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites (Elsevier BV, 2015), pp. 1–15. doi:10.1016/B978-0-85709-684-5.00001-1 [Google Scholar]
  11. C.S. Sirimanna, A.C. Manalo, W. Karunasena, S. Banerjee, L. McGarva, in Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites (Elsevier BV, 2015), pp. 267–285. doi:10.1016/B978-0-85709-684-5.00013-8 [CrossRef] [Google Scholar]
  12. E. Secrieru, V. Mechtcherine, C. Schröfl, D. Borin, Study on concrete pumpability combining different laboratory tools and linkage to rheology. Const. and Build. Mat. 144, 451–461 (2017). doi:10.1016/j.conbuildmat.2017.03.199 [CrossRef] [Google Scholar]
  13. E. Secrieru, S. Fataei, C. Schröfl, V. Mechtcherine, Rheological characterisation and prediction of pumpability of strain-hardening cement-basedcomposites (SHCC) with and without addition of superabsorbent polymers (SAP) at various temperatures. Const. and Build. Mat. 112, 581–594 (2016). doi:10.1016/j.conbuildmat.2016.02.161 [CrossRef] [Google Scholar]
  14. W.-J. Long, K.H. Khayat, A. Yahia, F. Xing, Rheological approach in proportioning and evaluating prestressed self-consolidating concrete. Cem. and Conc. Comp. 82, 105–116 (2017). doi:10.1016/j.cemconcomp.2017.05.008 [CrossRef] [Google Scholar]
  15. W.A. Megid, K.H. Khayat, Effect of concrete rheological properties on quality of formed surfaces cast with self-consolidating concrete and superworkable concrete. Cem. and Conc. Comp. 93, 75–84 (2018). doi:10.1016/j.cemconcomp.2018.06.016 [CrossRef] [Google Scholar]
  16. D. Feys, R. Cepuritis, S. Jacobsen, K. Lesage, E. Secrieru, A. Yahia, Measuring Rheological Properties of Cement Pastes: Most common Techniques, Procedures and Challenges. RILEM Tech. Let. 2, 129–135 (2017), https://letters.rilem.net/index.php/rilem/article/view/43. Accessed 25 Mar 2019 [CrossRef] [Google Scholar]
  17. R. Mercado, L. Fuentes, Measure of asphalt emulsions stability by oscillatory rheology. Const. and Build. Mat. 155, 838–845 (2017). doi:10.1016/j.conbuildmat.2017.08.095 [CrossRef] [Google Scholar]
  18. T. Yoshida, Y. Tasaka, Y. Murai, Rheological evaluation of complex fluids using ultrasonic spinning rheometry in an open container. J. Rheol. 61, 537–549 (2017). doi:10.1122/1.4980852 [CrossRef] [Google Scholar]
  19. Y.J. Kim, B.Y. Cho, S.J. Lee, J. Hu, J.W. Wilde, Investigation of Rheological Properties of Blended Cement Pastes Using Rotational Viscometer and Dynamic Shear Rheometer. Advances in Materials Science and Engineering, 6303681 (2018). doi:10.1155/2018/6303681 [Google Scholar]
  20. A.Y. Abebe, L. Lohaus, Rheological characterization of the structural breakdown process to analyze the stability of flowable mortars under vibration. Const. and Build. Mat. 131, 517–525 (2017). doi:10.1016/j.conbuildmat.2016.11.102 [CrossRef] [Google Scholar]
  21. Kyong-Ku Yun, Pangil Choi, Jung HeumYeon, Correlating rheological properties to the pumpability and shootability of wet-mix shotcrete mixtures. Const. and Build. Mat. 98, 884–891 (2015). doi:10.1016/j.conbuildmat.2015.09.004 [CrossRef] [Google Scholar]
  22. O.V. Donets, A.A. Plugin, V.I. Babushkin, D.M. Titov, V.O. Renyov, UA Patent 55610, 15 Apr 2003 [Google Scholar]
  23. Y. Takagi, K. Takasu, H. Koyamada, H. Suyama, A basic study on fluid prediction of mortar with various powders. Int. J. of GEOMATE 14(4), 146–150 (2018). doi:10.21660/2018.42.3548 [CrossRef] [Google Scholar]
  24. R. Zhang, D.K. Panesar, New approach to calculate water film thickness and the correlation to the rheology of mortar and concrete containing reactive MgO. Const. and Build. Mat. 150, 892–902 (2017). doi:10.1016/j.conbuildmat.2017.05.218 [CrossRef] [Google Scholar]
  25. DSTU B V.2.6-145:2010 Konstruktsii budynkiv i sporud. Zakhyst betonnykh i zalizobetonnykh konstruktsii vid korozii. Zahalni tekhnichni vymohy (Buildings and facilities structures. Corrosion protection for concrete and reinforced concrete srtuctures. General technical requirements). (Minregiobud of Ukraine, Kyiv, 2010) [Google Scholar]
  26. EN 206-1:2000/A1:2004 Concrete Part 1: Specification, performance, production and conformity (European Committee for Standardization, 2004) [Google Scholar]
  27. A. Plugin, L. Trykoz, O. Herasymenko, A. Pluhin, V. Konev, Independent diagnostic computer systems with the ability to restore operational characteristics of construction facilities. Diag. 19(2), 11–21 (2018). doi:10.29354/diag/83009. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.