Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 06007
Number of page(s) 6
Section Sustainable Materials and Technologies
DOI https://doi.org/10.1051/e3sconf/202016606007
Published online 22 April 2020
  1. M. Schneider, The cement industry on the way to low-carbon future. Cem. Concr. Res. 124, 1–19 (2019). doi:10.1016/j.cemconres.2019.105792 [Google Scholar]
  2. S.A. Miller, V.M. John, S.A. Pacca, A. Horvath, Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 114, 115–124 (2018). doi:10.1016/j.cemconres.2017.08.026 [Google Scholar]
  3. The role of cement in the 2050 low carbon economy (CEMBUREAU, 2013), https://cembureau.eu/news-views/publications. Accessed 25 Sep 2013 [Google Scholar]
  4. T. Proske, M. Rezvani, S. Palm, Ch. Müller, C.-A. Graubner. Concretes made of efficient multicomposite cements with slag and limestone. Cem. Concr. Comp. 89, 107–119 (2018). doi.org/10.1016/j.cemconcomp.2018.02.012 [CrossRef] [Google Scholar]
  5. K.L. Scrivener, V.M. John, E.M. Gartner, et al., Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26 (2018). doi:10.1016/j.cemconres.2018.03.015 [Google Scholar]
  6. B. Gerd, M. Zajac, J. Skocek, B.M. Haha, Development of composite cements characterized by low environmental footprint. J. Clean. Prod. 226, 503–514 (2019). doi:10.1016/j.jclepro.2019.04.050 [Google Scholar]
  7. K. Yang, Y. Jung, M. Cho, S. Tae, Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 103, 774–783 (2015). doi:10.1016/j.jclepro.2014.03.018 [Google Scholar]
  8. Z. Giergiczny, Fly ash and slag. Cem. Concr. Res. 124, 1–18 (2019). doi:10.1016/j.cemconres.2019.105826 [Google Scholar]
  9. J. Kuterasińska, A. Krol, Econom. Environ. Stud. A 16, 3 (2016) [Google Scholar]
  10. E. Smrckova, M. Bacuvcik, and I. Janotka, Basic Characteristics of Green Cements of CEM V/A and CEM V/B Kind. Adv. Mater. Res. 897, 196–199 (2014). doi:10.4028/www.scientific.net/amr.897.196 [CrossRef] [Google Scholar]
  11. J.J. Chen, L.G. Li, P.L. Ng, A.K.H. Kwan, Effects of superfine zeolite on strength, flowability and cohesiveness of cementitious paste. Cem. Concr. Compos. 83, 101–110 (2017). doi:10.1016/j.cemconcomp.2017.06.010 [Google Scholar]
  12. R. Firdous, D. Stephan, J.N.Y. Djobo. Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics. Constr. Build. Mater. 190, 1251–1263 (2018). doi:10.1016/j.conbuildmat.2018.09.191 [Google Scholar]
  13. T. Kropyvnytska, M. Sanytsky, T. Rucinska, O. Rykhlitska, Development of nanomodified rapid hardening clinker-efficient concretes based on composite Portland cements. EEJET 6, 38–48 (2019). doi:10.15587/1729-4061.2019.185111 [CrossRef] [Google Scholar]
  14. M. Limbachiya, S.C. Bostanci, H. Kew, Suitability of BS EN 197-1 CEM II and CEM V cement for production of low carbon concrete. Constr. Build. Mater. 71, 397–405 (2014). doi:10.1016/j.conbuildmat.2014.08.061 [Google Scholar]
  15. P. Sikora, E. Horszczaruk, T. Rucinska, The Effect of Nanosilica and Titanium Dioxide on the Mechanical and Self-Cleaning Properties of WasteGlass Cement Mortar. Procedia Eng. 108, 146–153 (2015). doi:10.1016/j.proeng.2015.06.130 [Google Scholar]
  16. P. Krivenko, R. Runova, I. Rudenko, V. Skorik, V. Omelchuk, Analysis of plasticizer effectiveness during alkaline cement structure formation. EEJET 4, 35–41 (2017). doi:10.15587/17294061.2017.106803 [CrossRef] [Google Scholar]
  17. P. Krivenko, V. Gots, O. Petropavlovsskyi, I. Rudenko, O. Konstantinovskyj, A. Kovalchuk. Development of solutions concerning regulation of proper deformations in alkali-activated cements. EEJET 5, 24–32 (2019). doi:10.15587/17294061.2019.181150 [CrossRef] [Google Scholar]
  18. N. Lushnikova, L. Dvorkin, in Sustainability of Construction Materials, 2nd edn., ed. by J.M. Khatib (Elsevier, Woodhead Publish., 2016) [Google Scholar]
  19. A. Vimmrova, M. Keppert, O. Michalko, R. Cerny, Calcined gypsum–lime–metakaolin binders: Design of optimal composition. Cem. Concr. Comp. 52, 91–96 (2014). doi:10.1016/j.cemconcomp.2014.05.011 [CrossRef] [Google Scholar]
  20. M. Sanytsky, T. Kropyvnytska, H.-B. Fischer, N. Kondratieva, Performance of low carbon modified composite gypsum binders with increased water resistance. Chem. Chem. Technol. 13, 495–502 (2019). doi:10.23939/chcht13.04.495 [CrossRef] [Google Scholar]
  21. D. Barnat-Hunek, P. Smarzewski, S. Fic, Compos. Theor. Pract. A 15, 21 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.