Open Access
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 06012
Number of page(s) 12
Section Sustainable Materials and Technologies
Published online 22 April 2020
  1. X. Li, J. Liang, Z. Hou, W. Zhang, Y. Wang, Y. Zhu, Y. Qian, The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode. J. Power Sources 293, 868–875 (2015). doi:10.1016/j.jpowsour.2015.06.031 [Google Scholar]
  2. R.D. Deshpande, J. Li, Y.T. Cheng, M.W. Verbrugge, Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. J. Electrochem. Soc. 158, A845–A849 (2011). doi:10.1149/1.3591094 [Google Scholar]
  3. Z. Hu, S. Zhang, C. Zhang, G. Cui, High performance germanium-based anode materials. Coordin Chem Rev 326, 34–85 (2016). doi:10.1016/j.ccr.2016.08.002 [CrossRef] [Google Scholar]
  4. D. Carolan, Recent advances in germanium nanocrystals: Synthesis, optical properties and applications. Prog. Mater. Sci. 90, 128-158 (2017). doi:10.1016/j.pmatsci.2017.07.005 [Google Scholar]
  5. Z. Yu, X. Meng, M. Yin, M. Sun, M. Yuan, H. Li, Pulsed laser-assisted ionic liquid electrodeposition of gallium nanoparticles and germanium nanostructures for energy storage. Chem. Phys. Lett. 698, 181–186 (2018). doi:10.1016/j.cplett.2018.03.023 [Google Scholar]
  6. X. Liu, Y. S. Liu, M.M. Harris, J. Li, K.X. Wang, J.S. Chen, Germanium nanoparticles supported by 3D ordered macroporous nickel frameworks as highperformance free-standing anodes for Li-ion batteries. Chem. Eng. J. 354, 616–622 (2018). doi:10.1016/j.cej.2018.08.056 [Google Scholar]
  7. K. Mishra, X.C. Liu, F.S. Ke, X.D. Zhou, Porous germanium enabled high areal capacity anode for lithium-ion batteries. Composites Part B 163, 158–164 (2019). doi:10.1016/j.compositesb.2018.10.076 [CrossRef] [Google Scholar]
  8. Q. Liu, J. Hou, C. Xu, Z. Chen, R. Qin, H. Liu, TiO2 particles wrapped onto macroporous germanium skeleton as high performance anode for lithium-ion batteries. Chem. Eng. J. 381, 122649 (2020). doi:10.1016/j.cej.2019.122649 [Google Scholar]
  9. J. Zhang, T. Yu, J. Chen, H. Liu, D. Su, Z. Tang, J. Xie, L. Chen, A. Yuan, Q. Kong, Germanium-based complex derived porous GeO2 nanoparticles for building high performance Li-ion batteries. Ceram. Int. 44, 1127–1233 (2018). doi:10.1016/j.ceramint. 2017.10.069 [Google Scholar]
  10. S.Y. Lim, W. Jang, S. Yun, W.S. Yoon, J.Y. Choi, D. Whang, Amorphous germanium oxide nanobubbles for lithium-ion battery anode. Mater. Res. Bull. 110, 24–31 (2019). doi:10.1016/j.materresbull.2018.10.007 [Google Scholar]
  11. K.T. Chen, W.C. Chang, H.J. Yang, C.Y. Tsai, S.B. Huang, H.Y. Tuan, Free standing Si (Ge) nanowire/Cu nanowire composites as lithium ion battery anodes. J. Taiwan Inst. Chem. E 104, 54–64 (2019). doi:10.1016/j.jtice.2019.07.014 [CrossRef] [Google Scholar]
  12. W. Zhao, J. Chen, Y. Lei, N. Du, D. Yang, A novel three-dimensional architecture of Co-Ge nanowires towards high-rate lithium and sodium storage. J. Alloy. Compd. 815 (2020). doi:10.1016/j.jallcom.2019.152281 [Google Scholar]
  13. M. Zhao, D.L. Zhao, X.Y. Han, H.X. Yang, Y.J. Duan, X.M. Tian, Ge nanoparticles embedded in spherical ordered mesoporous carbon as anode material for high performance lithium ion batteries. Electrochim. Acta 287, 21–28 (2018). doi:10.1016/j.electacta.2018.08.050 [Google Scholar]
  14. U. Gulzar, T. Li, X. Bai, S. Goriparti, R. Brescia, C. Capiglia, R.P. Zaccaria, Nitrogen-doped single walled carbon nanohorns enabling effective utilization of Ge nanocrystals for next generation lithium ion batteries. Electrochim. Acta 298, 89–96 (2019). doi:10.1016/j.electacta.2018.11.130 [Google Scholar]
  15. K.H. Nam, K.J. Jeon, C.M. Park, Layered germanium phosphide-based anodes for highperformance lithiumand sodium-ion batteries. Energy Storage Mater. 17, 78–87 (2019). doi:10.1016/j.ensm.2018.07.026 [Google Scholar]
  16. X. Liu, T. Ji, T. Nie, T. Wang, Z. Liu, S. Liu, J. Zhao, Y. Li, A nano-Ge-coated 3D porous carbon fabricated by ionic liquid electrodeposition for application in lithium storage. Mater. Lett. 261 (2020). doi:10.1016/j.matlet.2019.127157 [Google Scholar]
  17. R. Mo, D. Rooney, K. Sun, H.Y. Yang, 3D nitrogendoped graphene foam with encapsulated germanium/nitrogen-doped, graphene yolk-shell nanoarchitecture for high-performance flexible Liion battery. Nat. Commun. 8 (2017). doi:10.1038/ncomms13949 [Google Scholar]
  18. B. Wang, Z. Wen, J. Jin, X. Hong, S. Zhang, K. Rui, A novel strategy to prepare Ge@C/RGO hybrids as high-rate anode materials for lithium ion batteries. J. Power Sources 342, 521–528 (2017). doi:10.1016/j.jpowsour.2016.12.091 [Google Scholar]
  19. M. Zhao, D.L. Zhao, H.X. Yang, X.Y. Han, Y.J. Duan, X.M. Tian, W.J. Meng, Graphene-supported cubic hollow carbon shell-coated germanium particles as high-performance anode for lithium-ion batteries. Ceram. Int. 45, 13210–13218 (2019). doi:10.1016/j.ceramint.2019.04.005 [Google Scholar]
  20. Y. Chen, L. Ma, X. Shen, Z. Ji, A. Yuan, K. Xu, S.A. Shah, In-situ synthesis of Ge/reduced graphene oxide composites as ultrahigh rate anode for lithium-ion battery. J. Alloy. Compd. 801, 90–98 (2019). doi:10.1016/j.jallcom.2019.06.074 [CrossRef] [Google Scholar]
  21. F. Zhao, Y. Wang, X. Zhang, X. Liang, F. Zhang, L. Wang, Y. Li, Y. Feng, W. Feng, Few-layer methylterminated germanene-graphene nanocomposite with high capacity for stable lithium storage. Carbon 161, 287–298 (2020). doi:10.1016/j.carbon.2020.01.072 [Google Scholar]
  22. W.J. Meng, M. Zhao, H.X. Yang, Y.Q. Wu, H. Pu, R.Z. Gao, Y. Yang, D.L. Zhao, Synthesis of CuGeO3/reduced graphene oxide nanocomposite by hydrothermal reduction for high performance Li-ion battery anodes. Ceram. Int. 46(7), 9249–9255 (2019). doi:10.1016/j.ceramint.2019.12.178 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.