Open Access
Issue
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
Article Number 00002
Number of page(s) 15
DOI https://doi.org/10.1051/e3sconf/202016800002
Published online 06 May 2020
  1. J. M. Reynolds, An introduction to applied and environmental geophysics (John Wiley & Sons, 2011) [Google Scholar]
  2. G. Zhang, Q.-T. Lü, P.-R. Lin, G.-B. Zhang, Electrode array and data density effects in 3D induced polarization tomography and applications for mineral exploration. Arab. J. Geosci. 12, 221 (2019) [CrossRef] [Google Scholar]
  3. W. H. Pelton, S. H. Ward, P. G. Hallof, W. R. Sill, P. H. Nelson, Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics. 43, 588–609 (1978) [CrossRef] [Google Scholar]
  4. P. H. Nelson, G. D. Van Voorhis, Estimation of sulfide content from induced polarization data. Geophysics. 48, 62–75 (1983) [CrossRef] [Google Scholar]
  5. G. Gurin, K. Titov, Y. Ilyin, Induced Polarization of Rocks Containing Metallic Particles: Evidence of Passivation Effect. Geophys. Res. Lett. 46, 670–677 (2019) [Google Scholar]
  6. C. L. Bérubé, G. R. Olivo, M. Chouteau, S. Perrouty, Mineralogical and textural controls on spectral induced polarization signatures of the Canadian Malartic gold deposit: Applications to mineral exploration. Geophysics. 84, B135-B151 (2019) [CrossRef] [Google Scholar]
  7. L. Lévy, P. K. Maurya, S. Byrdina, J. Vandemeulebrouck, F. Sigmundsson, K. Árnason, T. Ricci, D. Deldicque, M. Roger, B. Gibert, others, Electrical resistivity tomography and time-domain induced polarization field investigations of geothermal areas at Krafla, Iceland: comparison to borehole and laboratory frequency-domain electrical observations. Geophys. J. Int. 218, 1469–1489 (2019) [Google Scholar]
  8. J. J. Daniels, Three-dimensional resistivity and induced-polarization modeling using buried electrodes. Geophysics. 42, 1006–1019 (1977) [CrossRef] [Google Scholar]
  9. H. Shima, 2-D and 3-D resistivity image reconstruction using crosshole data. Geophysics. 57, 1270–1281 (1992) [CrossRef] [Google Scholar]
  10. W. Daily, E. Owen, Cross-borehole resistivity tomography. Geophysics. 56, 1228–1235 (1991) [CrossRef] [Google Scholar]
  11. C. A. Moreira, R. A. S. Paes, L. M. Ilha, J. da Cruz Bittencourt, Reassessment of Copper Mineral Occurrence Through Electrical Tomography and Pseudo 3D Modeling in Camaquã Sedimentary Basin, Southern Brazil. Pure Appl. Geophys. 176, 737–750 (2019) [CrossRef] [Google Scholar]
  12. Ali, Mosaad, Sun, Shulin, Qian, Wei, Bohari, Abdou Dodo, Claire, Dusabemariya, Zhang, Yan, Application of Resistivity Method for Mining Tailings Site Selection in Karst Regions. E3S Web Conf. 144, 1002 (2020) [CrossRef] [Google Scholar]
  13. W. Qian, B. Milkereit, G. McDowell, K. Stevens, S. Halladay, Borehole Resistivity Logging and Tomography for Mineral Exploration. Proc. Explor. 07 Fifth Decenn. Int. Conf. Miner. Explor., 1115–1118 (2007) [Google Scholar]
  14. Y. Li, D. W. Oldenburg, 3-D inversion of induced polarization data. 65, 1931–1945 (2000) [Google Scholar]
  15. M. H. Loke, R. D. Barker, Least-squares deconvolution of apparent resistivity pseudosections. Geophysics. 60, 1682–1690 (1995) [CrossRef] [Google Scholar]
  16. M. H. Loke, R. D. Barker, Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 44, 131–152 (1996) [Google Scholar]
  17. V. N. Dakhnov, M. G. Latishova, V. A. Ryapolov, Investigation of wells by the induced polarization method (electrolytic well logging): Sb. Promisl. Geofiz. Vnetoneft, 46–82 (1952) [Google Scholar]
  18. W. Qian, B. Milkereit, G. McDowell, K. Stevens, S. Halladay, Borehole resistivity logging and tomography for mineral exploration. Proc. Explor. 7, 1115–1118 (2007) [Google Scholar]
  19. P. C. Lightfoot, B. Milkereit, others, in Proceedings of Exploration (2007), vol. 7, pp. 629–646 [Google Scholar]
  20. G. C. Begg, J. M. A. Hronsky, W. L. Griffin, S. Y. O’Reilly, in Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time (Elsevier, 2018), pp. 1–46 [Google Scholar]
  21. S. Yang, W. Qu, Y. Tian, J. Chen, G. Yang, A. Du, Origin of the inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu sulfide ore deposit, China: Post-segregation diffusion of Os. Chem. Geol. 247, 401–418 (2008) [Google Scholar]
  22. P. C. Lightfoot, C. E. G. Farrow, Geology, geochemistry, and mineralogy of the Worthington offset dike: A genetic model for offset dike mineralization in the Sudbury Igneous Complex. Econ. Geol. 97, 1419–1446 (2002) [Google Scholar]
  23. A. J. Naldrett, Magmatic sulfide deposits: Geology, geochemistry and exploration (Springer Science & Business Media, 2013) [Google Scholar]
  24. D. H. Rousell, J. S. Fedorowich, B. O. Dressler, Sudbury Breccia (Canada): a product of the 1850 Ma Sudbury Event and host to footwall Cu--Ni--PGE deposits. Earth-Science Rev. 60, 147–174 (2003) [CrossRef] [Google Scholar]
  25. J. E. Hawley, The Sudbury ores, their mineralogy and origin; Part 1, The geological setting. Can. Mineral. 7, 1–29 (1962) [Google Scholar]
  26. R. B. Hearst, W. A. Morris, Regional gravity setting of the Sudbury Structure. Geophysics. 66, 1680–1690 (2001) [CrossRef] [Google Scholar]
  27. R. A. F. Grieve, D. Stoeffler, A. Deutsch, The Sudbury structure: Controversial or misunderstood? J. Geophys. Res. Planets. 96, 22753–22764 (1991) [Google Scholar]
  28. D. E. Ames, A. Davidson, N. Wodicka, Geology of the giant Sudbury polymetallic mining camp, Ontario, Canada. Econ. Geol. 103, 1057–1077 (2008) [Google Scholar]
  29. D. Stöffler, M. Avermann, L. Bischoff, P. Brockmeyer, A. Deutsch, B. O. Dressler, R. Lakomy, V. Müller-Mohr, Sudbury, Canada: remnant of the only multi-ring (?) impact basin on Earth. Meteoritics. 24, 328 (1989) [Google Scholar]
  30. A. Deutsch, R. A. F. Grieve, M. Avermann, L. Bischoff, P. Brockmeyer, D. Buhl, R. Lakomy, V. Müller-Mohr, M. Ostermann, D. Stöffler, The Sudbury structure (Ontario, Canada): A tectonically deformed multi-ring impact basin. Geol. Rundschau. 84, 697–709 (1995) [CrossRef] [Google Scholar]
  31. T. E. Krogh, D. W. Davis, F. Corfu, E. G. Pye, in The geology and ore deposits of the Sudbury structure (Ontario Geological Survey Toronto, Ont., Canada, 1984), 1, 431–446, (1984) [Google Scholar]
  32. P. C. Lightfoot, I. A. Zotov, others, Geology and geochemistry of the Sudbury Igneous Complex, Ontario, Canada: Origin of nickel sulfide mineralization associated with an impact-generated melt sheet. Geol. Ore Depos. C/C Geol. Rudn. Mestorozhdenii. 47, 349 (2005) [Google Scholar]
  33. A. J. Naldrett, R. H. Hewins, E. G. Pye, P. E. Giblin, others, The main mass of the Sudbury Igneous Complex. Geol. Ore Depos. Sudbury Basin. Spec. 1, 235–252 (1984) [Google Scholar]
  34. P. C. Lightfoot, R. R. Keays, G. G. Morrison, A. Bite, K. P. Farrell, Geologic and geochemical relationships between the contact sublayer, inclusions, and the main mass of the Sudbury Igneous Complex; a case study of the Whistle Mine Embayment. Econ. Geol. 92, 647–673 (1997) [Google Scholar]
  35. R. R. Keays, P. C. Lightfoot, Formation of Ni--Cu--platinum group element sulfide mineralization in the Sudbury impact melt sheet. Mineral. Petrol. 82, 217–258 (2004) [Google Scholar]
  36. P. C. Lightfoot, Nickel sulfide ores and impact melts: Origin of the Sudbury Igneous Complex (Elsevier, 2016) [Google Scholar]
  37. W. A. Morris, Paleomagnetism of some sulphide occurrences from the south range of the Sudbury Basin: J. Can. Soc. Expl. Geophys. 17, 55–71 (1981) [Google Scholar]
  38. G. G. Morrison, others, Morphological features of the Sudbury structure in relation to an impact origin. Geol. ore Depos. Sudbury Struct. Ed. by EG Pye, AJ Naldrett, PE Giblin. Ontario Geol. Surv. Spec. 1, 513–520 (1984) [Google Scholar]
  39. G. G. Morrison, B. C. Jago, T. L. White, others, Footwall mineralization of the Sudbury Igneous Complex. Ontario Geol. Surv. 5, 119–132 (1994) [Google Scholar]
  40. D. J. Marshall, T. R. Madden, Induced polarization, a study of its causes. Geophysics. 24, 790–816 (1959) [CrossRef] [Google Scholar]
  41. J. S. Sumner, Principles of induced polarization for geophysical exploration (Elsevier, 2012), 5 [Google Scholar]
  42. J. H. Schön, Physical properties of rocks: Fundamentals and principles of petrophysics (Elsevier, 2015), 65 [Google Scholar]
  43. S. H. Ward, B. K. Sternberg, D. J. LaBrecque, M. M. Poulton, Recommendations for IP research. Lead. Edge. 14, 243–247 (1995) [Google Scholar]
  44. I. M. Johnson, Spectral induced polarization parameters as determined through timedomain measurements. Geophysics. 49, 1993–2003 (1984) [CrossRef] [Google Scholar]
  45. D. Santoso, A. Laesanpura, B. Sulistijo, S. Bahri, I. Suyanto, others, Application of Time Domain Induced Polarization (TDIP) Methods to Metallic Minerals Prospect on Kasihan Region, Pacitan Regency, East Java, Indonesia. Int. J. Econ. Environ. Geol., 16–23 (2019) [Google Scholar]
  46. H. O. Seigel, Mathematical formulation and type curves for induced polarization. Geophysics. 24, 547–565 (1959) [CrossRef] [Google Scholar]
  47. W. M. Telford, W. M. Telford, L. P. Geldart, R. E. Sheriff, R. E. Sheriff, Applied geophysics (Cambridge university press, 1990), 1 [CrossRef] [Google Scholar]
  48. J. Palich, W. Qian, C. Creek, I. Consulting, EarthPro Meeeting the Challenges of Gold Exploration through High Resolution Borehole and Surface IP. Geophys. Explor. Geophys. Expand. Abstr. (2010) [Google Scholar]
  49. J. J. Daniels, A. V Dyck, Borehole resistivity and electromagnetic methods applied to mineral exploration. IEEE Trans. Geosci. Remote Sens., 80–87 (1984) [Google Scholar]
  50. B. Zhou, S. A. Greenhalgh, Cross-hole resistivity tomography using different electrode configurations. Geophys. Prospect. 48, 887–912 (2000) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.