Open Access
Issue
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
Article Number 00003
Number of page(s) 16
DOI https://doi.org/10.1051/e3sconf/202016800003
Published online 06 May 2020
  1. J. Martinez, J. Rey, S. Sandoval, Hidalgo, R. Mendoza, Geophysical Prospecting Using ERT and IP Techniques to Locate Galena Veins. Remote Sens. 11, 2923 (2019) [CrossRef] [Google Scholar]
  2. S. Uhlemann, J. Chambers, W. Falck, A. Tirado Alonso, J. Fernández González, A. de Gea, Applying electrical resistivity tomography in ornamental stone mining: challenges and solutions. Minerals. 8, 491 (2018) [CrossRef] [Google Scholar]
  3. S. A. Sultan, S. A. Mansour, F. M. Santos, A. S. Helaly, Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area, South Eastern Desert, Egypt. J. Geophys. Eng. 6, 345–356 (2009) [CrossRef] [Google Scholar]
  4. A. R. Heritiana, R. Riva, R. Ralay, R. Boni, Evaluation of flake graphite ore using selfpotential (SP), electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar. J. Appl. Geophys. (2019) [Google Scholar]
  5. C. A. Moreira, E. G. Dos Santos, L. M. Ilha, R. Paes, Recognition of Sulfides Zones in Marble Mine Through Comparative Analysis of Electrical Tomography Arrangements. Pure Appl. Geophys. 176, 4907–4920 (2019) [CrossRef] [Google Scholar]
  6. M. Ali, S. Sun, W. Qian, A. D. Bohari, D. Claire, Y. Zhang, Application of Resistivity Method for Mining Tailings Site Selection in Karst Regions. E3S Web Conf. 144, 1002 (2020) [CrossRef] [Google Scholar]
  7. J. M. Reynolds, An introduction to applied and environmental geophysics, John Wiley & Sons, (2011) [Google Scholar]
  8. G. Zhang, Q.-T. Lü, P.-R. Lin, G.-B. Zhang, Electrode array and data density effects in 3D induced polarization tomography and applications for mineral exploration. Arab. J. Geosci. 12, 221 (2019) [CrossRef] [Google Scholar]
  9. S. R. Mashhadi, H. Ramazi, The application of resistivity and induced polarization methods in identification of skarn alteration haloes: A case study in the QaleAlimoradkhan Area. J. Environ. Eng. Geophys. 23, 363–368 (2018) [Google Scholar]
  10. M. A. Hussein, S. S. Imbaby, A. R. Ibrahim, Panel Width Affected by Rock Mass Classifications (Abu-Tartur Phosphate Mines). Accept. under Publ. JES. 41 (2013) [Google Scholar]
  11. W. H. Pelton, S. H. Ward, P. G. Hallof, W. R. Sill, P. H. Nelson, Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics. 43, 588–609 (1978) [CrossRef] [Google Scholar]
  12. P. H. Nelson, G. D. Van Voorhis, Estimation of sulfide content from induced polarization data. Geophysics. 48, 62–75 (1983) [CrossRef] [Google Scholar]
  13. G. Gurin, K. Titov, Y. Ilyin, Induced Polarization of Rocks Containing Metallic Particles: Evidence of Passivation Effect. Geophys. Res. Lett. 46, 670–677 (2019) [Google Scholar]
  14. C. L. Bérubé, G. R. Olivo, M. Chouteau, S. Perrouty, Mineralogical and textural controls on spectral induced polarization signatures of the Canadian Malartic gold deposit: Applications to mineral exploration. Geophysics. 84, B135--B151 (2019) [Google Scholar]
  15. D. J. Vaughan, Sulfide mineralogy and geochemistry: introduction and overview. Rev. Mineral. Geochemistry. 61, 1–5 (2006) [CrossRef] [Google Scholar]
  16. C. Moreno, R. Sáez, F. González, G. Almodóvar, M. Toscano, G. Playford, A. Alansari, S. Rziki, A. Bajddi, Age and depositional environment of the Draa Sfar massive sulfide deposit, Morocco. Miner. Depos. 43, 891 (2008) [CrossRef] [Google Scholar]
  17. J. A. Walker, Stratigraphy and lithogeochemistry of Early Devonian volcanosedimentary rocks hosting the Nash Creek Zn-Pb-Ag Deposit, northern New Brunswick (pp. 52-97). Geol. Investig. New Brunswick 2009. Ed. by G.L. Martin. New Brunswick Dep. Nat. Resour. Lands, Miner. Pet. Div. Miner. Resour. Rep., 52–97 (2010) [Google Scholar]
  18. M. A. Hussein, A. R. Ibrahim, S. S. Imbaby, Load calculations and selection of the powered supports based on rock mass classification and other formulae for Abu-Tartur longwall phosphate mining conditions. J. Eng. Sci. 41, 1728–1742 (2013) [Google Scholar]
  19. T. Dahlin, 2D resistivity surveying for environmental and engineering applications. First Break. 14, 275–283 (1996) [CrossRef] [Google Scholar]
  20. M. H. Loke, J. E. Chambers, D. F. Rucker, O. Kuras, P. B. Wilkinson, Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 95, 135–156 (2013) [CrossRef] [Google Scholar]
  21. D. F. Brown, Technical report on mineral resource estimate. Nash Creek Proj. Restigouche County, New Brunswick, Canada, 1–190 (2007) [Google Scholar]
  22. B. Milkereit, W. Qian, H. Ugalde, E. Bongajum, M. Gräber, Geophysical Imaging of a” Blind. Zn-Pb-Ag Depos. EAGE Expand. Abstr. Rome, 9–12 (2008) [Google Scholar]
  23. E. Bongajum, B. Milkereit, J. Huang, Building 3D stochastic exploration models from borehole geophysical and petrophysical data: A case study. Can. J. Explor. Geophys. 38, 40–50 (2013) [Google Scholar]
  24. M. A. Hussein, A. R. Ibrahim, S. S. Imbaby, Application of the Rock Mass Classification Systems to Pillar Design in Longwall Mining for Abu-Tartur Longwall Phosphate Mining Conditions. J. Eng. Sci. 41, (2013) [Google Scholar]
  25. A. D. Bohari, M. Harouna, A. Mosaad, Geochemistry of Sandstone Type Uranium Deposit in Tarat Formation from Tim-Mersoi Basin in Northern Niger (West Africa): Implication on Provenance, Paleo-Redox and Tectonic Setting. J. Geosci. Environ. Prot. 6, 185 (2018) [Google Scholar]
  26. I. R. Annesley, C. Cutforth, D. Billard, R. T. Kusmirski, K. Wasyliuk, T. Bogdan, K. Sweet, C. Ludwig, D. R. Lentz, K. G. Thorne, others, in International Applied Geochemistry Symposium, 40, 421 (2009) [Google Scholar]
  27. P. James, F. Barr, “Technical Report and Updated Mineral Resource Estimate on the Nash Creek Project, New Brunswick, Canada” (2018) [Google Scholar]
  28. M. H. Loke, R. D. Barker, Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 44, 131–152 (1996) [Google Scholar]
  29. H. O. Seigel, Mathematical formulation and type curves for induced polarization. Geophysics. 24, 547–565 (1959) [CrossRef] [Google Scholar]
  30. D. W. Oldenburg, Y. Li, Estimating depth of investigation in dc resistivity and IP surveys. Geophysics. 64, 403–416 (1999) [CrossRef] [Google Scholar]
  31. S. Tavakoli, T. E. Bauer, T. M. Rasmussen, P. Weihed, S.-Å. Elming, Deep massive sulphide exploration using 2D and 3D geoelectrical and induced polarization data in Skellefte mining district, northern Sweden. Geophys. Prospect. 64, 1602–1619 (2016) [Google Scholar]
  32. T. Dahlin, B. Zhou, A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 52, 379–398 (2004) [Google Scholar]
  33. R. D. Ogilvy, Down-hole IP surveys applied to off-hole mineral exploration—some design considerations. Geoexploration. 22, 59–73 (1984) [CrossRef] [Google Scholar]
  34. J. Bernard, O. Leite, F. Vermeersch, I. Instruments, F. Orleans, Multi-electrode resistivity imaging for environmental and mining applications. IRIS Instruments, Orleans (2006) [Google Scholar]
  35. M. H. Loke, Tutorial 2 -D and 3-D electrical imaging surveys. Geotomo Software, Malaysia, 127 (2014) [Google Scholar]
  36. E. H. Eloranta, A Comparison between Mise-à-la-Masse anomalies obtained by polepole and pole-dipole electrode configurations. Geoexploration. 23, 471–481 (1985) [CrossRef] [Google Scholar]
  37. S. Chandra, V. A. Rao, V. S. Singh, A combined approach of Schlumberger and axial pole--dipole configurations for groundwater exploration in hard-rock areas. Curr. Sci., 1437–1443 (2004) [Google Scholar]
  38. J. E. Nyquist, M. J. S. Roth, Improved 3D pole-dipole resistivity surveys using radial measurement pairs. Geophys. Res. Lett. 32 (2005) [Google Scholar]
  39. A. A. Hassan, E. H. Kadhim, M. T. Ahmed, Performance of Various Electrical Resistivity Configurations for Detecting Buried Tunnels Using 2D Electrical Resistivity Tomography Modelling. DIYALA J. Eng. Sci. 11, 14–21 (2018) [Google Scholar]
  40. N. Usman, K. Abdullah, M. Nawawi, Investigating the performance of combined resistivity model using different electrode arrays configuration. Arab. J. Geosci. 12, 125 (2019) [CrossRef] [Google Scholar]
  41. C. A. Moreira, S. M. Lopes, C. Schweig, A. da Rosa Seixas, Geoelectrical prospection of disseminated sulfide mineral occurrences in Camaquã sedimentary basin, Rio Grande do Sul state, Brazil. Brazilian J. Geophys. 30 (2012) [CrossRef] [Google Scholar]
  42. G. Gurin, K. Titov, Y. Ilyin, A. Tarasov, Induced polarization of disseminated electronically conductive minerals: a semi-empirical model. Geophys. J. Int. 200, 1555–1565 (2015) [Google Scholar]
  43. G. Gurin, A. Tarasov, Y. Ilyin, K. Titov, Time domain spectral induced polarization of disseminated electronic conductors: Laboratory data analysis through the Debye decomposition approach. J. Appl. Geophys. 98, 44–53 (2013) [CrossRef] [Google Scholar]
  44. A. Revil, N. Florsch, D. Mao, Induced polarization response of porous media with metallic particles –Part 1: A theory for disseminated semiconductors. Geophysics. 80, D525-D538 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.