Open Access
Issue
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
Article Number 00032
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202016800032
Published online 06 May 2020
  1. Slastunov, S.V, Koroleva, V.N., Kolikov, K.S. (2001). Gornoe delo i okruzhayuschaya sreda. Moskva: Logos [Google Scholar]
  2. Pevzner, M.E., Malyishev, L.A., Melkov, A.D., Ushan, V.P. (2001). Gornoe delo i ohrana okruzhayuschey sredyi. Moskva: Izdatelstvo Moskovskogo gosudarstvennogo gornogo universiteta [Google Scholar]
  3. Dorozhko, S., Malkevich, N., Morzak, G. (2012). Tehnicheskie osnovyi ohranyi okruzhayuschey sredyi. Minsk: BNTU [Google Scholar]
  4. Nechitaylo, N., Nagornaya, E., Nesterova, E. (2016). Exploring the properties of ultrafiltration membranes with a dynamic layer and bactericidal inoculation for the purification of natural waters. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy [Eastern-European Journal of Enterprise Technologies], 6/5 (84), 46-53. https://doi.org/10.15587/1729-4061.2016.86187 [CrossRef] [Google Scholar]
  5. Nechytailo, N., Nahorna, О., Kosiuk, Y. Defining the effect of the chemical concentration and solution pH on membrane chemical cleaning process. E3S Web of Conferences: International Conference Essays of Mining Science and Practice, 109 (2019). https://doi.org/10.1051/e3sconf/201910900061 [Google Scholar]
  6. Yu, X., Yi, B., Xie, Z., Wang, X., Liu, F. Prediction of the conformational property for polymers using quantum chemical descriptors. Chemometrics and Intelligent Laboratory Systems, 87(2), 247–251, (2007). https://doi.org/10.1016/j.chemolab.2007.03.001 [CrossRef] [Google Scholar]
  7. Liu, W., Yi, P., Tang, Z. QSPR Models for Various Properties of Polymethacrylates Based on Quantum Chemical Descriptors. QSAR & Combinatorial Science, 25(10), 936–943, (2006). https://doi.org/10.1002/qsar.200510177 [Google Scholar]
  8. Bureau, C., Chong, D., Lécayon, G., Delhalle, J. Accurate density functional calculation of core electron binding energies. Journal of Electron Spectroscopy and Related Phenomena, 83(2-3), 227–234, (1997). https://doi.org/10.1016/S0368-2048(96)03096-4 [Google Scholar]
  9. Naves de Brito, A., Svensson, S., Ågren, H., Delhalle, J. Experimental and theoretical study of the XPS core levels of gas phase acetonitrile, acrylonitrile and propionitrile. Model molecules for polyacrylonitrile. Journal of Electron Spectroscopy and Related Phenomena, 63(3), 239–251, (1993). https://doi.org/10.1016/0368-2048(93)87006-L [Google Scholar]
  10. Yu, X., Yi, B., Wang, X. Prediction of refractive index of vinyl polymers by using density functional theory. Journal of Computational Chemistry, 28(14), 2336–2341, (2007). https://doi.org/10.1002/jcc.20752 [CrossRef] [PubMed] [Google Scholar]
  11. Xu, J., Chen, B., Zhang, Q., Guo, B. Prediction of refractive indices of linear polymers by a four-descriptor QSPR model. Polymer, 45(26), 8651–8659, (2004). https://doi.org/10.1016/j.polymer.2004.10.057 [Google Scholar]
  12. Yang, C., Wang, B., Zhang, Y., Wang, H. Preparation and properties of polyacrylonitrile fibers with guanidine groups. Fibers and Polymers, 16(8), 1611–1617, (2015). https://doi.org/10.1007/s12221-015-4480-1 [CrossRef] [Google Scholar]
  13. Mei, Y., Yao, C., Fan, K., Li, X. Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers. Journal of Membrane Science, 417-418, 20–27, (2012). https://doi.org/10.1016/j.memsci.2012.06.021 [Google Scholar]
  14. Salaneck, W. R., Wu, C. R., Brédas, J. L., Ritsko, J. J. Electronic structure of polyacrylonitrile. Chemical Physics Letters, 127(1), 88–92, (1986). https://doi.org/10.1016/S0009-2614(86)80214-7 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.