Open Access
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
Article Number 00036
Number of page(s) 10
Published online 06 May 2020
  1. Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 129-132 [Google Scholar]
  2. Bulat, A., Lukinov, V., Perepelitsa, V. (2011). Results of realized new concept of complex coal-gas deposit development. Technical and Geoinformational Systems in Mining: School of Underground Mining, 13-18 [CrossRef] [Google Scholar]
  3. Churin, V., Vysotskaya, N., Sizova, Yu., Danilina, E., Gorelov, D. (2019). Distribution of mineral extraction revenue: overview of international practice. Mining of Mineral Deposits, 13(2), 66-74 [CrossRef] [Google Scholar]
  4. Medunić, G., Mondol, D., Rađenović, A., Nazir, S. (2018). Review of the latest research on coal, environment, and clean technologies. Rudarsko Geolosko Naftni Zbornik, 33(3), 13–21 [CrossRef] [Google Scholar]
  5. Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68-75 [CrossRef] [Google Scholar]
  6. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36-42 [Google Scholar]
  7. Bondarenko, V., Tabachenko, M., Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119 [CrossRef] [Google Scholar]
  8. Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., Smoliński, A. (2016). Ecoefficiency of underground coal gasification (UCG) for electricity production. Fuel, (173), 239-246 [CrossRef] [Google Scholar]
  9. Śliwińska, A., Burchart-Korol, D., Smoliński, A. (2017). Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology. Science of the Total Environment, (574), 1571-1579 [Google Scholar]
  10. Kalybekov, T., Rysbekov, K.B., Toktarov, A.A., Otarbaev, O.M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, (5), 34-43 [CrossRef] [Google Scholar]
  11. Demydov, M. (2020). Solutions multivariance about designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2). Accepted paper [Google Scholar]
  12. Ilyashov, M. Diedich, I., & Nazimko, V. (2019). Prospective tendencies of coal mining risk management. Mining of Mineral Deposits, 13(1), 111-117 [CrossRef] [Google Scholar]
  13. Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42 [Google Scholar]
  14. Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Rozrobka rodovyshch, 10(1), 16-24 [Google Scholar]
  15. Saik, P., Petlevanyi, M., Lozynskyi, V., Sai, K., Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231 [CrossRef] [Google Scholar]
  16. Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions’ sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 131-138 [Google Scholar]
  17. Pivnyak, G.G., Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121. [Google Scholar]
  18. Malanchuk, Z., Moshynskyi, V., Malanchuk, V., Korniienko, Y., Koziar, M. (2020). Results of Research into the Content of Rare Earth Materials in Man-Made Phosphogypsum Deposits. Key Engineering Materials, (844), 77-87 [Google Scholar]
  19. Vladyko, O., Kononenko, M., Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining, 147-150 [CrossRef] [Google Scholar]
  20. Yun, Z., Jianfang, S., Zhongchun, L. (2019). Study of numerical simulation method modelling gas injection into fractured reservoirs. Mining of Mineral Deposits, 13(2), 41-45 [CrossRef] [Google Scholar]
  21. Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E.C., Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, (277), 1-16 [CrossRef] [Google Scholar]
  22. Krasnyk, V. (2017). Modeling the process of mineral rocks cutting with a tool made of polycrystallinе superhard materials. Mining of Mineral Deposits, 11(3), 84-92 [CrossRef] [Google Scholar]
  23. Pivnyak, G., Dychkovskyi, R., Smirnov, A., Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1-10 [Google Scholar]
  24. Ali, M.A.M. (2018). Software application in mining engineering. Mining of Mineral Deposits, 12(1), 48-53 [CrossRef] [Google Scholar]
  25. Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10), 1409-1414 [CrossRef] [Google Scholar]
  26. Popovych, V., Voloshchyshyn, A. (2019). Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(436). 230-237 [Google Scholar]
  27. Ramayah, M., Rasiah, R., Somasundram, S., Turner, J.J. (2019). Determinants of environmental degradation: reflections on the impact of identified economic variables on the environment. Mining of Mineral Deposits, 13(4), 42-52 [CrossRef] [Google Scholar]
  28. Son, N.L.H., Anh, N.H., Dong, H.N. (2016). Review of Underground Coal Gasification Technologies. Proceedings – 3rd International Conference on Green Technology and Sustainable Development, 7796621, 69-73 [Google Scholar]
  29. Shafirovich, E., Varma, A. (2009). Underground coal gasification: A brief review of current status. Industrial and Engineering Chemistry Research, 48(17), 7865-7875. [CrossRef] [Google Scholar]
  30. Basu, R. (2017). Evaluation of some renewable energy technologies. Mining of Mineral Deposits, 11(4), 29-37 [CrossRef] [Google Scholar]
  31. Xin, L., Wang, Z., Huang, W., Kang, G., Lu, X., Zhang, P., Wang, J. (2014). Temperature field distribution of burnt surrounding rock in UCG stope. International Journal of Mining Science and Technology, 24(4), 573-580 [Google Scholar]
  32. Falshtynskyi, V., Dychkovskyi, R., Lozynskyi, V., Saik, P. (2015). Analytical, laboratory and bench test researches of underground coal gasification technology in National Mining University. New Developments in Mining Engineering, 97-106 [Google Scholar]
  33. Xin, L., Cheng, W., Xie, J., Liu, W., Xu, M. (2019). Theoretical research on heat transfer law during underground coal gasification channel extension process. International Journal of Heat and Mass Transfer, (142), 118409 [Google Scholar]
  34. Su, F., Itakura, K., Deguchi, G., Ohga, K., Goto, T. (2012). Laboratory studies on evaluation of gasification effect for conversion of coal resources in underground coal gasification (UCG) reactors. Advanced Materials Research, (600), 111-115 [Google Scholar]
  35. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36 [Google Scholar]
  36. Kostúr, K., Kačúr, J. (2008). The monitoring and control of underground coal gasification in laboratory conditions. Acta Montanistica Slovaca, 13(1), 111-117 [Google Scholar]
  37. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5). 21-29 [Google Scholar]
  38. Kapusta, K., Stańczyk, K., Wiatowski, M., Chećko, J. (2013). Environmental aspects of a field-scale underground coal gasification trial in a shallow coal seam at the Experimental Mine Barbara in Poland Fuel, (113), 196-208 [CrossRef] [Google Scholar]
  39. Sarhosis, V., Kapusta, K., Lavis, S. (2018). Underground coal gasification (UCG) in Europe: Field trials, laboratory experiments, and EU-funded projects. Underground Coal Gasification and Combustion, 129-171 [CrossRef] [Google Scholar]
  40. Perkins, G. (2018). Underground coal gasification – Part I: Field demonstrations and process performance. Progress in Energy and Combustion Science, (67), 158-187. [Google Scholar]
  41. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I., Illiashov, M. (2012). Geomechanical Processes During Underground Mining, 238 p. Book [Google Scholar]
  42. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54 [Google Scholar]
  43. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 11-18 [Google Scholar]
  44. Wiatowski, M., Stańczyk, K., Świadrowski, J., (2012). Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine “Barbara”. Fuel, (99), 170-179 [CrossRef] [Google Scholar]
  45. Falshtyns’kyy, V., Dychkovs’kyy, R., Stanczyk, K., Swiadrowski, J. (2010). Analytical determination of parameters of material and thermal balance and physical parameters of a coal seam work-out on mine “Barbara”, Poland. New Techniques and Technologies in Mining, 161-165 [CrossRef] [Google Scholar]
  46. Voloshyn, O., Potapchuk, I., Zhevzhyk, O., Yemelianenko, V., Horiachkin, V., Zhovtonoha, M., Semenenko, Ye., Таtarko, L. (2018). Study of the plasma flow interaction with the borehole surface in the process of its thermal reaming. Mining of Mineral Deposits, 12(3), 28-35. [CrossRef] [Google Scholar]
  47. Bulat, A., Voloshyn, O., Zhevzhik, O. (2013). Plasma reactor for thermochemical preparation of coal-air mixture before its burning in the furnaces. Annual ScientificTechnical Colletion Mining of Mineral Deposits, 39-44 [CrossRef] [Google Scholar]
  48. Golovchenko, A. (2020). Some aspects of the control for the radial distribution of burden material and gas flow in the blast furnace. Energies, 13(4), 923-926 [Google Scholar]
  49. Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual ScientificTechnical Colletion Mining of Mineral Deposits, 125-132 [CrossRef] [Google Scholar]
  50. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z., Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300 [Google Scholar]
  51. Laciak, M., Kačur, J., Durdán, M. (2011). Material and energy balance of the UCG process in the laboratory conditions. Modern Management of Mine Producing, Geology and Environmental Protection, (3), 69-76 [Google Scholar]
  52. Fischer, D D., Boysen, J.E., Gunn, R.D. (1977). Energy balance for the second underground coal gasification experiment, Hanna, Wyoming. Trans Soc Min Eng AIME, 262(4), 341-347 [Google Scholar]
  53. Sawyer, W.K., Shuck, L.Z. (1976). Numerical simulation of mass and energy transfer in the longwall process of underground gasification of coal. Symposium on Numerical Simulation of Reservoir Performance, 355-365 [Google Scholar]
  54. Lozynskyi, V., Dychkovskyi, R., Saik, P., Falshtynskyi, V. (2018). Coal Seam Gasification in Faulting Zones (Heat and Mass Balance Study). Solid State Phenomena, (277), 66-79 [CrossRef] [Google Scholar]
  55. Gür, M., Canbaz, E.D. (2020). Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification. Fuel, (269), 117331 [CrossRef] [Google Scholar]
  56. Yang, L.H., Zhang, X., Zhu, K. (2016). Hydrogen production in underground coal gasification (UCG). Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(3), с. 376-383 [CrossRef] [Google Scholar]
  57. Liu, S.Q., Wang, Y.Y., Zhao, K., Yang, N. (2009). Enhanced-hydrogen gas production through underground gasification of lignite. Mining Science and Technology, 19(3), 389-394 [Google Scholar]
  58. Falshtynskyi, V., Dychkovskyi, R., Saik, P., Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109-112. [CrossRef] [Google Scholar]
  59. Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.