Open Access
Issue
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
Article Number 00055
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202016800055
Published online 06 May 2020
  1. R. Ohayon, C. Soize, Structural Acoustics and Vibration: Mechanical Models, Variational Formulations and Discretization (Academic Press, 1997) [Google Scholar]
  2. I.L. Vér, L.L. Beranek, Noise and Vibration Control Engineering: Principles and Applications (Wiley; 2 edition, 2005) [Google Scholar]
  3. SOU 10.1.00174088.001. (2004). Dehazyfikatsiia vuhilnykh shakht. Vymohu do sposobiv ta skhem dehazatsii. Kyiv: Minpalyvenerho Ukrainy [Google Scholar]
  4. Sofiyskiy, K.K., Gavrilov, V.I., Zhitlenok, D.M., Vlasenko, V.V., Petukh, A.P. (2015). Gidrodinamicheskiye sposoby vozdeystviya na napryazhennyye gazonasyshchennyye ugolnyye plasty. Donetsk: Skhidnyi vydavnychyi dim [Google Scholar]
  5. V. Vlasenko, K. Dudlia, M. Kyrychenko. Mathematical model of the cracking process in the coal-rock massif under hydrodynamic impact. E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109 (2019). https://doi.org/10.1051/e3sconf/201910900111 [Google Scholar]
  6. H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer–Verlag Berlin Heidelberg, 2017) [CrossRef] [Google Scholar]
  7. B.M. Sumer, Hydrodynamics around cylindrical structures (Denmark, Technical University of Denmark, 2006) [CrossRef] [Google Scholar]
  8. U. Fey, M. König, H. Eckelmann, A new Strouhal–Reynolds-number relationship for the circular cylinder in the range 47<Re<23105, Physics Fluids, 10 (1998) [Google Scholar]
  9. A.I. Voloshin, V.N. Poturaev, B.V. Ponomarev. (1989). One-dimensional flow of a twophase medium. Soviet Applied Mechanics, 25 (8) [CrossRef] [Google Scholar]
  10. B.S. Carmo, On wake interference in the flow around two circular cylinders: direct stability analysis and flow-induced vibrations (PhD thesis, Department of Aeronautics, Imperial College, London, 2009) [Google Scholar]
  11. T.H. Pulliam, Efficient solution methods for the Navier-Stokes equations. Lecture notes for the von Karman Institute for Fluid Dynamics (Belgium, Lecture Series Von Karman Institute, 1985) [Google Scholar]
  12. A.O. Pylypenko, O.B. Polevoy, O.A. Prykhodko, Numerical simulation of Mach number and angle of attack influence on regimes of transonic turbulent flows over airfoils, TsAGI Science Journal, 43(1) (2012) [CrossRef] [Google Scholar]
  13. P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flow (AIAA Paper 92-439, 1992) [Google Scholar]
  14. P.L. Roe, Approximate Riemann solvers, J. Comp/ Phys, 43 (1981) [Google Scholar]
  15. ISO 3740:2000-11 (E) Acoustics Determination of sound power levels of noise sources Guidelines for the use basic standards. [Google Scholar]
  16. J.D. Revell, R.A. Prydz, A.P. Hays, Experimental study of aerodynamic noise vs drag relationships for circular cylinders (AIAA Paper 77–1292, 1977) [Google Scholar]
  17. J.C. Tannehill, D.A. Anderson, R.H. Pletcher, Computational fluid mechanics and heat transfer (Taylor & Francis, New York, Second edition, 1997) [Google Scholar]
  18. F.R. Menter, Improved two-equation k−ω turbulence models for aerodynamic flows (NASA-92-tm-103975, 1992) [Google Scholar]
  19. N. Curle, The Influence of Solid Boundaries upon Aerodynamic Sound, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 231 (1187) (1955) [Google Scholar]
  20. J.E. Ffowcs Williams, D.L. Hawkings, Sound Generated by Turbulence and Surfaces in Unsteady Motion, Philosophical Transactions of the Royal Society, A264 (1151) (1969) [Google Scholar]
  21. M.J. Lighthill, On sound generated aerodynamically I. General theory. Proc. of the Royal Society of London, A211 (1952) [Google Scholar]
  22. M.J. Lighthill, On sound generated aerodynamically II. General theory. Proc. of the Royal Society of London, A222 (1954) [Google Scholar]
  23. H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in Physics, Vol. 12, No.6 (1998) [CrossRef] [Google Scholar]
  24. Mirny, S., Redchyts, D. (2019) Numerical simulation of the viscous incompressible flow around of the group of two bodies. Systemnye tekhnologii [System technologies], 3(122), 117-132 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.