Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 02004
Number of page(s) 7
Section Climate change and buildings
DOI https://doi.org/10.1051/e3sconf/202017202004
Published online 30 June 2020
  1. R. Basu, J.M. Samet. Relation between Elevated Ambient Temperature and Mortality: A Review of the Epidemiologic Evidence. Epidemiologic Reviews, 24 (2002); 190–202. [CrossRef] [PubMed] [Google Scholar]
  2. J.M. Robine, S.L. Cheung, S. L. Roy, H. V. Oyen, F.R. Herrmann. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies. 331(2008); 171-178 [CrossRef] [PubMed] [Google Scholar]
  3. Zero Carbon Hub. Overheating in Homes, the Big Picture. Full Report; Zero Carbon Hub: London, UK. (2015). [Google Scholar]
  4. N.E. Klepeis, W.C. Nelson, J.P. Robinson, et al. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Exposure Analysis and Environmental Epidemiology 11(2001); 231–52. [Google Scholar]
  5. J.A. Leech, W.C. Nelson, R.T. Burnett, S. Aaron,M.E. Raizenne. It’s about time: A comparison of Canadian and American time-activity patterns. Exposure Analysis and Environmental Epidemiology 12(2002); 427–32 [CrossRef] [Google Scholar]
  6. J. L.White-Newsome, B. N. Sanchez, O. Jolliet, Z. Zhang, E. A. Parker, J. T. Dvonch. Climate change and health: indoor heat exposure in vulnerable populations. Environmental Research. 112(2012); 20-27 [CrossRef] [PubMed] [Google Scholar]
  7. M. Hamdy, S. Carluccia, P. Hoes, J. Hensen. The impact of climate change on the overheating risk in dwellings-A Dutch case study. Building and Environment. 122(2017); 307-323 [Google Scholar]
  8. A. Beizaee, K. J. Lomas, S. K. Firth. National survey of summertime temperature and overheating risk in English homes. Building and Environment. 65(2013); 1-17. [Google Scholar]
  9. M. Baborska-Marozny, F. Stevenson, M. Grudzinska. Overheating in retrofitted flats: occupant practices, learning and interventions. Building and Research and Information. 45(2017); 40-59. [CrossRef] [Google Scholar]
  10. A. Pathan, A. Mavrogianni, A. Summerfield, T. Oreszczyn, M. Davies. Monitoring summer indoor overheating in the London housing stock. Energy and Buildings. 141(2017); 361-378. [Google Scholar]
  11. Zero Carbon Hub. Overheating in homes-the big picture. Full report. (2015); 91. [Google Scholar]
  12. R. Simson, J. Kurnitski, M. Maivel. Summer thermal comfort: Compliance assessment and overheating prevention in new apartment building in Estonia. Building Performance Simulation. 10 (2017); 378-391. [CrossRef] [Google Scholar]
  13. E. S. Quigley, K. J. Lomas. Performance of mediumrise, thermally lightweight apartment buildings during a heat wave. Proceedings of 10th Windsor Conference: Rethinking Comfort, Windsor, London, UK. (2018). 32-47. [Google Scholar]
  14. R. Mitchell, S. Natarajan. Overheating risk in Passivhaus dwellings. Building Services Engineering Research Technology. 40(2019); 446–469. [CrossRef] [Google Scholar]
  15. A. D. Peacock, D. P. Jenkins, D. Kane. Investigating the potential of overheating in UK dwellings as a consequence of extant climate change. Energy Policy. 38(2010); 3277-3288 [Google Scholar]
  16. R. Gupta, M. Kapsali. Empirical assessment of indoor air quality and overheating in low-carbon social housing dwellings in England, UK. Advances in Building Energy Research. (2015); 1-23 [Google Scholar]
  17. S.M. Sameni, M. Gaterell, A. Montazami, A. Ahmed. Overheating investigation in UK social housing flats built to the Passivhaus standard. Building and Environment. 92 (2015); 222-235 [Google Scholar]
  18. M.J. Fletcher, D.K. Johnston, D.W. Glew, J.M. Parker. An empirical evaluation of temporal overheating in an assisted living Passivhaus dwelling in the UK. Build. Environ. 121 (2017); 106-118 [Google Scholar]
  19. D. Fosas, D. A. Coley, S. Natarajan et al. Mitigation versus adaptation: Does insulating dwellings increase overheating risk? Building and Environment. 143(2018); 740–759. [Google Scholar]
  20. R.S. McLeod, C.J. Hopfe, A. Kwan. An investigation into future performance and overheating risks in Passivhaus dwellings. Building and Environment. 70 (2013); 189-209 [Google Scholar]
  21. X. Zhang, G. Flato, M. Kirchmeier-Young, et al. Changes in Temperature and Precipitation Across Canada. In Canada’s Changing Climate Report; Bush, E., Lemmen, D.S., Eds.; Government of Canada: Ottawa, ON, Canada. (2019); 112–193. [Google Scholar]
  22. Natural Resources Canada (NRCan). Survey of Household Energy Use 2011. Detailed Statistical Report. Office of Energy Efficiency. Natural Resources Canada. Ottawa, Ontario. (2011). [Google Scholar]
  23. Natural Resources Canada (NRCan). Survey of commercial and institutional energy use – buildings 2009. Detailed Statistical Report. Office of Energy Efficiency. Natural Resources Canada. Ottawa, Ontario. (2012). [Google Scholar]
  24. Statistics Canada. Census in Brief Dwellings in Canada. Revised by May-2019. (2017) https://www12.statcan.gc.ca/censusrecensement/2016/as-sa/98-200-x/2016005/98-200-x2016005-eng.pdf [Google Scholar]
  25. Natural Resources Canada (NRCan). Energy efficiency trends in Canada 1990-2013. Office of Energy Efficiency. Natural Resources Canada. Ottawa, Ontario. (2013). [Google Scholar]
  26. A. Parekh, K. Chris. Thermal and Mechanical Systems Descriptors for Simplified Energy Use Evaluation of Canadian Houses. Proceedings of SimBuild. 5(2012); 279-286. [Google Scholar]
  27. R. Rocha. Montreal Building Age Story Map. (2018). https://www.cbc.ca/news2/interactives/montreal-375-buildings/(accessed December 24, 2019). [Google Scholar]
  28. RBQ. Construction Code and Safety Code - Régie du bâtiment du Québec 2018. https://www.rbq.gouv.qc.ca/en/laws-regulations-andcodes/construction-code-and-safety-code.html (accessed December 24, 2019). [Google Scholar]
  29. A. Katal, M. Mortezazadeh, L. Wang. Modeling building resilience against extreme weather by integrated CityFFD and CityBEM simulations. Applied Energy. 250 (2019); 1402-1417 [Google Scholar]
  30. R. Pachauri, M. Allen, V. Barros, et al. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental panel on climate change. IPCC. (2014) [Google Scholar]
  31. A. Moazami, S. Carlucci S, Geving. Critical analysis of software tools aimed at generating future weather files with a view to their use in building performance simulation. Energy Procedia 132 (2017); 640-645. [Google Scholar]
  32. WeatherShift. (2016). http://www.weather-shift.com/ [Google Scholar]
  33. S.E. Belcher, J.N. Hacker, J.N. Hacker. Constructing design weather data for future climates. Article in Building Service Engineering. 26(2005); 49-61 [Google Scholar]
  34. U. Berardi. Book: Sustainability Assessments of Buildings. published in Sustainability. (2017). [Google Scholar]
  35. L. Troup, D. Fannon. Morphing Climate Data to Simulate Building Energy Consumption. ASHRAE and IBPSA-USA SimBuild 2016. Building Performance Modeling Conference, Salt Lake City, UT, August 8-12, (2016). [Google Scholar]
  36. ANSI/ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy. (2017) [Google Scholar]
  37. Institute of Medicine (IOM). Climate Change. The Indoor Environment, and Health. Institute of Medicine of the National Academies Press, Washington, DC. (2011). [Google Scholar]
  38. M. Baborska-Marozny, F. Stevenson, M. Grudzinska. Overheating in retrofitted flats: occupant practices, learning and interventions. Building and Research and Information. 45(2017); 40-59. [CrossRef] [Google Scholar]
  39. E.S. Quigley, K. J. Lomas. 2018. Performance of medium-rise, thermally lightweight apartment buildings during a heat wave. Proceedings of 10th Windsor Conference: Rethinking Comfort, Windsor, London, UK. (2018); 32-47. [Google Scholar]
  40. European Commission SIMLAB: Sensitivity analysis software – Joint Research Centre. https://ec.europa.eu/jrc/en/samo/simlab (2015) [Google Scholar]
  41. Zhang Y, Korolija I. jEPlus - An EnergyPlus simulation manager for parametric. http://www.jeplus.org/wiki/doku.php [Google Scholar]
  42. I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(2001); 271-280 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.