Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 10001
Number of page(s) 8
Section Moisture safety and CLT
DOI https://doi.org/10.1051/e3sconf/202017210001
Published online 30 June 2020
  1. Boverket, Building Regulations, BFS 2011:6. 2017, The Swedish National Board of Housing, Building and Planning: Karlskrona, Sweden. [Google Scholar]
  2. Svensk-Byggtjänst, AMA Hus 18, in HSD Konstruktioner av längdformvaror av trä i hus. 2018, Svensk Byggtjänst: Stockholm. [Google Scholar]
  3. Esping, B., J.-G. Salin, and P. Brander, Fukt i trä för byggindustrin. 2005, Stockholm: SP Sveriges Provnings-och Forskningsinstitut. [Google Scholar]
  4. Olsson, L., Moisture Conditions in Exterior Wooden Walls and Timber During Production and Use, in Chalmers, Civil and Environmental Engineering, Gothenburg, Sweden. 2014, Chalmers University of Technology: Gothenburg, Sweden. p. 101. [Google Scholar]
  5. Axelsson, K., et al., Väderskyddad produktion - Möjligheter och erfarenheter, 11259. 2004, FoU-Väst: Göteborg. [Google Scholar]
  6. Larsson, B. and L. Söderlind, Väderskyddad produktionsmiljö-Framtidens byggande. 2006, FoU-Väst: Göteborg. [Google Scholar]
  7. Brycke, E. and B. Martinsson, Väderskydd - En lathund för entreprenören, ID:13499. 2018, SBUF Svenska Byggbranschens utvecklingsfond: Göteborg. [Google Scholar]
  8. Gustafsson, A., KL-trähandbok, Fakta och projektering av KL-träkonstruktioner. 2017, Stockholm: Svenskt trä. 186. [Google Scholar]
  9. Olsson, L. and K. Mjörnell, Väderskyddat byggande eller omfattande fukt-och mögelkontroll av fuktexponerat virke, konstruktioner och KL-trä? Bygg & Teknik, 2017. Nr 5. [Google Scholar]
  10. Finch, G., High-Rise Wood Building Enclosures. ASHRAE, 2016. [Google Scholar]
  11. Sedlbauer, K., Prediction of Mould Growth by Hygrothermal Calculation. 2001, Fraunhofer-Institute for Building Physics: Holzkirchen. [Google Scholar]
  12. Viitanen, H., Critical condtions for the mould growth in concrete and in other materials contacted with concrete - durability of concrete against mould growth (VTT W6). 2004, VTT Technical Research Centre of Finland: Espoo, Finland. p. 25. [Google Scholar]
  13. Johansson, P., et al., Kritiskt fukttillstånd för mikrobiell tillväxt på byggmaterial - Kunskapssammanfattning (SP Rapport 2005:11). 2005, SP Sveriges Provnings-och Forskningsinstitut: Borås. [Google Scholar]
  14. Nevander, L.-E. and B. Elmarsson, eds. Fukthandboken - Praktik och teori “Moisture design manual” 2nd ed. 1994, Svensk Byggtjänst: Stockholm. 538. [Google Scholar]
  15. Olsson, L. and K. Mjörnell. Laboratory investigation of sills and studs exposed to rain. in International Building Physics Conference (IBPC). 2012. Kyoto, Japan. [Google Scholar]
  16. Johansson, P., A. Ekstrand-Tobin, and G. Bok, An innovative method for evaluating the critical moisture level for mould growth on building materials. Building & Environment 65, 2014. 81(2 July 2014): p. 6. [Google Scholar]
  17. Schmidt, E., L., et al., HOW MONITORING CLT BUILDINGS CAN REMOVE MARKET BARRIERS AND SUPPORT DESIGNERS IN NORTH AMERICA: AN INTRODUCTION TO PRELIMINARY ENVIRONMENTAL STUDIES, in CLEM+CIMAD 2017, II Ibero-American Congress on Construction Timber. 2017, National University of Northwestern Buenos Aires: Buenos Aires, Argentina. [Google Scholar]
  18. Singh, T., D. Page, and I. Simpson, Manufactured structural timber building materials and their durability. Construction structural timber building materials and their durability, 2019. 217: p. p.84-92. [CrossRef] [Google Scholar]
  19. Glass, S., et al., CLT hanbook, Cross-Laminated Timber (Chapter 10), U.S. Edition, ed. E. Karacabeyli and B. Douglas. 2013, Pointe-Claire, Canada: FPInnovations. [Google Scholar]
  20. McClung, R., et al., Hygrothermal performance of cross-laminated timber wall assemblies with built-in moisture: field measurements and simulations. Building and Environment, 2014. 71: p. p.95-110. [Google Scholar]
  21. Wang, L. and H. Ge, Hygrothermal performance of cross-laminated timber wall assemblies: A stochastic approach. Building and Environment, 2016. 97: p. 14. [Google Scholar]
  22. Kukk, V., et al., Impact of cracks to the hygrothermal properties of CLT water vapour resistance and air permeability, in 11th Nordic Symposium on Building Physics, NSB2017, 11-14 June 2017, S. Geving and B. Time, Editors. 2017, Energy Procedia: Trondheim, Norway. p. 5. [Google Scholar]
  23. Dietsch, P., et al., Monitoring building climate and timber moisture gradient in large-span timber structures. Journal of Civil Structural Health Monitoring, 2014. 5: p. 12. [Google Scholar]
  24. Espinoza, O., et al., Cross-Laminated Timber: Status and Research Needs in Europe. BioResources, 2016. [Google Scholar]
  25. Lepage, R., Moisture Response of Wall Assemblies of Cross-Laminated Timber Construction in Cold Canadian Climates. 2012, University of Waterloo: Waterloo, Ontario, Canada. [Google Scholar]
  26. Liisma, E., et al., A case study on construction of CLT building without preliminary roof, in Forum Wood Building Baltic. 2019: Tallinn, Estonia. [Google Scholar]
  27. Mjörnell, K., Olsson, L., Moisture Safety of Wooden Buildings-Design, Construction and Operation. Journal of sustainable architecture and civil engineering, 2019. 24, nr 1(1). [Google Scholar]
  28. Nairn, J., Cross laminated timber properties including effects of non-glued edges and additional cracks. European Journal of Wood and Wood Products, 2017. 75: p. 10. [CrossRef] [Google Scholar]
  29. Scotta, R., et al., On the anchoring of timber walls to foundations: available strategies to prevent wood deterioration and on-site installation problems, in XIV International Conference on Building Pathology and Construction Repair-CINPAR 2018. 2018, Procedia Structural Integrity. [Google Scholar]
  30. Nore, K., J. Mattsson, and M. Austigard, Cross Laminated Timber vs. timber frame walls in water damage – comparing drying and mould growth, in 10th Nordic Symposium on Building Physics, 15-19 June. 2014: Lund. [Google Scholar]
  31. Srisgantharajah, J. and S. Ullah, En studie av fuktinnhold i massivtre - Oppfuktings-og uttørkingsprosessen, A study of water content in cross-laminated timber - The wetting- and drying process., in Fakultet for miljøvitenskap og teknologi Institutt for matematiske realfag og teknologi. 2015, Norges miljø-og biovitenskapelige universitet.: Ås, Norway. [Google Scholar]
  32. Kordziel, S., et al., MOISTURE MONITORING AND MODELING OF MASS TIMBER BUILDING SYSTEMS, in Wolrd Conference on Timber Engineering, August 20-23. 2018: Seoul, Republic Korea. [Google Scholar]
  33. Lepage, R., J. Higgins, and G. Finch, Moisture Uptake Testing for CLT Floor Panels in a Tall Wood Building in Vancouver, in 15th Canadian Conference on Building Science and Technology. 2017: Vancouver, Canada. [Google Scholar]
  34. Leyder, C., E. Chatzi, and A. Frangi, Structural health monitoring of an innovative timber building, in International Conference on Performance-based and Life-cycle Structural Engineering. 2015. [Google Scholar]
  35. Mustapha, G., K. Khondoker, and J. Higgins, MOISTURE PERFORMANCE AND VERTICAL MOVEMENT MONITORING OF PRE-FABRICATED CROSS LAMINATE TIMBER – FEATURED CASE STUDY: UBC TALLWOOD HOUSE, in 15th Canadian Conference on Building Science and Technology. 2017: Vancouver, Canada. [Google Scholar]
  36. Wang, J.Y., et al., DURABILITY OF MASS TIMBER STRUCTURES: A REVIEW OF THE BIOLOGICAL RISKS. Wood and Fiber Science, 2018. 50: p. pp.110-127. [CrossRef] [Google Scholar]
  37. Wang, J., WETTING AND DRYING PERFORMANCE OF WOOD-BASED ASSEMBLIES RELATED TO ON-SITE MOISTURE MANAGEMENT, in WCTE 2016 World Conference on Timber Engineering, August 22-25. 2016: Vienna, Austria. [Google Scholar]
  38. Zelinka, S.L., et al., Moisture monitoring throughout the construction and occupancy of mass timber buildings, in 1 st International Conference on New Horizons in Green Cicil Engineeirng (NHICE-01), 25-27 April. 2018: Victoria, BC, Canada. [Google Scholar]
  39. CEN, EN 16351:2015, Timber structures - Cross laminated timber - Requirements. 2015, European Committee for Standardization: Brussels. [Google Scholar]
  40. Brandner, R., Production and Technology of Cross Laminated Timber (CLT): State-of-the-art Report, in Focus Solid Timber Solutions - European Conference on Cross Laminated Timber (CLT). 2013: Graz, Austria. [Google Scholar]
  41. Alsayegh, G., et al., Preliminary Characterization of Physical Properties of Cross-Laminated-Timber (CLT) Panels for Hygrothermal Modelling. ASTM International, 2013. 2(1). [Google Scholar]
  42. Matzinger, I. and I. Teibinger, Construction with Cross-Laminated Timber in Multi-Storey Buildings Focus on Building Physica-Guidelines. 2013, Vienna, Austria: Holzforschung Austria. 145. [Google Scholar]
  43. Thivierge, C., Building with CLT Panels Durability Considerations, in Wood Design & Building - Winter 2011-12. 2012. p. 4. [Google Scholar]
  44. Öberg, J. and E. Wiege, Fuktrisker på KL-trä som utsätts för yttre klimat under produktion-fokus på mögel och uppfuktning, in Byggteknik och Design. 2018, KTH, Kungliga Tekniska Högskolan: Stockholm. [Google Scholar]
  45. Dimstrand, D. and F. Jansson, KL-trä som stommaterial, in Fakulteten för hälsa, natur-och teknikvetenskap. 2018, Karlstads Universitet: Karlstad. [Google Scholar]
  46. Gamboa, A.G., Water and Moisture in CLT. 2017, Wood Science and Engineering: Luleå. [Google Scholar]
  47. Gamboa, A.G., Effects of water and moisture in CLT and how todry it. 2018, Wood Science and Engineeering: Luleå. [Google Scholar]
  48. SMHI. Open Data. 2019 [cited 2019 August]; Available from: https://www.smhi.se/data. [Google Scholar]
  49. Thelandersson, S. and T. Isaksson, Mould resistance design (MRD) model for evaluation of microbial growth under varying climate conditions.. Building & Environment 65, 2013. [Google Scholar]
  50. SIS, SS-EN 13183-2, Moisture content of a piece of sawn timber-Part 2: Estimation by electrical resistance method. 2003, Swedish Standards Institute: Stockholm. [Google Scholar]
  51. Hallenberg, N. and E. Gilert, Betingelser för mögelpåväxt på trä - Klimatkammarstudier (SP rapport 1988:57). 1988, Statens Provningsanstalt: Borås. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.