Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 14010
Number of page(s) 6
Section Material properties measurement
DOI https://doi.org/10.1051/e3sconf/202017214010
Published online 30 June 2020
  1. Scrap paper. https://www.rappin.ee/eng/services-1 (Accessed 20 January 2020) [Google Scholar]
  2. Papp ja Paber. Keskkonnaministeerium. https://www.envir.ee/sites/default/files/huvitavaid_fakte_paber_ja_papp_0.pdf (Accessed23 May 2019) [Google Scholar]
  3. Mis on tselluvill. https://villavennad.ee/mis-on-tselluvill/ (Accessed 20 January 2020) [Google Scholar]
  4. R. Pere, (2008). Looduslikud ehitusmaterjalid. Seinad, põrand, katused ja siseviimistlus. Tallinn: AS Ajakirjade Kirjastus. [Google Scholar]
  5. K. Priilinn (2007). Paberkrohv aitab heli summutada. Äripäev. https://www.aripaev.ee/uudised/2007/08/14/paberkrohv-aitab-heli-summutada (Accessed 23 May 2019). [Google Scholar]
  6. J. Metslang 2012. Vana maamaja käsiraamat. Tallinn: Tammeraamat. [Google Scholar]
  7. Ehitusseadustik. (Accessed 19 January 2020) https://www.riigiteataja.ee/akt/121122019005 [Google Scholar]
  8. EVS 932:2017 Hoone ehitusprojekt https://www.evs.ee/tooted/evs-932-2017 (Accessed 19 January 2020) [Google Scholar]
  9. H. Janssen, A. Roels. Qualitative and quantitative assessment of interior moisture buffering by enclosures. Energy Build, 41(4), 2009. 382-394. https://doi.org/10.1016/j.enbuild.2008.11.007 [Google Scholar]
  10. M. Zhang, Z. Chen. Moisture Buffer Effect and its Impact on Indoor Environment Procedia Engineering, 205, 2017. 1123-1129. https://doi.org/10.1016/j.proeng.2017.10.417 [Google Scholar]
  11. M. Zhang, M. Qin, C. Rode, Z. Chen. Moisture buffering phenomenon and its impact on building energy consumption. Applied Thermal Engineering 124, (9) 2017, 337-345 http://dx.doi.org/10.1016/j.applthermaleng.2017.05.173. [Google Scholar]
  12. N. M. M. Ramos, V.P. Freitas. Laboratory testing for daily hygroscopic inertia assessment. In: Proceedings of the 8th symposium on building physics in the Nordic countries. 2008. Copenhagen: Denmark 809-816. [Google Scholar]
  13. C. Rode. Moisture buffering of building materials. Report BYG·DTU R-126, 2005. http://orbit.dtu.dk/fedora/objects/orbit:75984/datastreams/file_2415500/content (Accessed 01 May 2019) [Google Scholar]
  14. K. Svennberg. Moisture Buffering in the Indoor Environment. 2006. (Doctoral dissertation). http://www.byfy.lth.se/fileadmin/byfy/files/TVBH-1000pdf/TVBH-1016KSVweb.pdf (accessed 01 May 2019) [Google Scholar]
  15. C. Rode, R. Peuhkuri, B. Time, K. Svennberg, T. Ojanen. Moisture Buffer Value of Building Materials. Journal of ASTM International, vol. 4, no. 5, 2007. [Google Scholar]
  16. H. M. M. Ramos, J. M. P. Q. Delgado, V. P. Freitas. Influence of finishing coatings on hygroscopic moisture buffering in building elements. Constr Build Mater 24, 2010, 2590–2597. [Google Scholar]
  17. D. Maskell, A. Thomson, P. Walker, M. Lemke. Determination of optimal plaster thickness for moisture buffering of indoor air. BuildEnviron. 130, 2018, 143-150 https://doi.org/10.1016/j.buildenv.2017.11.045 [Google Scholar]
  18. EVS-EN ISO 12570:2000 Hygrothermal performance of building materials and products –Determination of moisture content by drying at elevated temperature. Retrieved from https://www.evs.ee/tooted/evs-en-iso-12570-2000 [Google Scholar]
  19. EVS-EN ISO 12571:2013 Hygrothermal performance of building materials and products – Determination of hygroscopic sorption properties. Retrieved from https://www.evs.ee/tooted/evs-en-iso-12571-2013 [Google Scholar]
  20. EVS-EN ISO 12572:2016 Hygrothermal performance of building materials and products - Determination of water vapour transmission properties - Cup method. Retrieved from https://www.evs.ee/tooted/evs-en-iso-12572-2016 [Google Scholar]
  21. Riigi teataja. Energiatõhususe miinimumnõuded. https://www.riigiteataja.ee/akt/113122018014 (Accessed 13 June 2019) [Google Scholar]
  22. EVS-EN ISO 10456:2008. Building materials and products. Hygrothermal properties. Tabulated design values and procedures for determining declared and design values. https://www.evs.ee/tooted/evs-en-iso-10456-2008 (Accessed 09 January 2020). [Google Scholar]
  23. O. Vares, A. Ruus, J. Raamets, E. Tungel. Determination of hygrothermal performance of clay-sand plaster: influence of covering on sorption and water vapour permeability. Energy Procedia, 132, 2017, 267−272. https://doi.org/10.1016/j.egypro.2017.09.719 [Google Scholar]
  24. E. Altmäe, A. Ruus, J. Raamets, E. Tungel. Determination of Clay-Sand Plaster Hygrothermal Performance: Influence of Different Types of Clays on Sorption and Water Vapour Permeability. Springer Proceedings in Energy: The Cold Climate HVAC2018 The 9th International Cold Climate Conference Sustainable new and renovated buildings in cold climates Kiruna – Sweden 12-15, March 2018. Springer, 945−955 https://doi.org/10.1007/978-3-030-00662-4_80 [Google Scholar]
  25. F. Collet, S. Pretot. Experimental investigation of moisture buffering capacity of sprayed hemp concrete. Constr Build Mater 36, 2012, 58-65. http://dx.doi.org/10.1016/j.conbuildmat.2012.04.139 [Google Scholar]
  26. C. Rode, R. Peuhkuri, K. K. Hansen, B. Time, A. Gustavsen, K. Svennberg, J. Arfvidsson, L.-E. Harderup, T. Ojanen. Moisture buffer value of Materials in Buildings. https://bwk.kuleuven.be/bwf/projects/annex41/protected/d ata/DTU%20Apr%202006%20Prese%20A41-T4-Dk-06-1.pdf (Accessed 09 January 2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.