Open Access
Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 16005 | |
Number of page(s) | 10 | |
Section | Passive, active and NZEB buildings | |
DOI | https://doi.org/10.1051/e3sconf/202017216005 | |
Published online | 30 June 2020 |
- A.J. Marszal, P. Heiselberg, J.S. Bourrelle, E. Musall, K. Voss, I. Sartori, A. Napolitano, Zero Energy Building - A review of definitions and calculation methodologies, Energy Build. 43, 971–979, (2011). [Google Scholar]
- Build Up, Overview | Zero-Energy Buildings: does the definition influence their design and implementation?, (2019), Available online: https://www.buildup.eu/en/news/overview-zero-energy-buildings-does-definition-influence-their-design-and-implementation. [Google Scholar]
- Z. Liu, Q. Zhou, Z. Tian, B. He, G. Jin, A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China, Renew. Sustain. Energy Rev. 114, 109314, (2019). [CrossRef] [Google Scholar]
- P. Singh, R. Verma, Zero-Energy Buildings-A Review, S-JPSET 5, 2229–7111, (2007). [Google Scholar]
- X. Wei, Z. Shicong, APEC 100 Best Practice Analysis of Nearly/Net Zero Energy Building; (2017); [Google Scholar]
- I. Sartori, A. Napolitano, K. Voss, Net zero energy buildings: A consistent definition framework, Energy Build. 48, 220–232, (2012). [Google Scholar]
- J.F. Garcia, L. Kranzl, Ambition levels of nearly zero energy buildings (nZEB) definitions: An approach for cross-country comparison, Buildings 8, (2018). [Google Scholar]
- ExcEED, (2020), Available online: http://www.exceedproject.eu/exceed-knowledge-sharing/data-from-the-exceed-platform-intelligence-for-better-buildings/ (accessed on Jan 24, 2020). [Google Scholar]
- European Union, Directive 2010/31/EU Of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast), EUR-Lex 13–35, (2010). [Google Scholar]
- European Commission, Comission Delegated Regulation (EU) No 244/2012: supplementing Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology framework for calculating cost-optimal level (2012), No 244/201, L81/18-L81/36. [Google Scholar]
- U.States President, Federal Leadership in environmental, energy, and economic performance, Environ. Policy Collect. 74, 52117–52127, (2009). [Google Scholar]
- N.I. C. Riedy, A. Lederwasch, Defining Zero Emission Buildings - Review and Recommendations: Final Report, Aust. Sustain. Built Environ. Counc. (2011). [Google Scholar]
- J. Kurnitski (Ed.), Cost optimal and nearly zero-energy buildings (nZEB): definitions, calculation principles and case studies, (2013), Available online: www.springer.com/us/book/9781447156093 (accessed on Jan 12, 2020). [CrossRef] [Google Scholar]
- CA EPBD, About us, (2019), Available online: https://epbd-ca.eu/about-us. [Google Scholar]
- IEA SHC, IEA SHC || Task 40: Net Zero Energy Solar Buildings, (2017), Available online: http://task40.iea-shc.org/ (accessed on Jan 8, 2020). [Google Scholar]
- P. Hernandez, P. Kenny, From net energy to zero energy buildings: Defining life cycle zero energy buildings (LC-ZEB), Energy Build. 42, 815–821, (2010). [Google Scholar]
- H. Erhorn, H. Erhorn-Kluttig, Selected examples of Nearly Zero-Energy Buildings; (2014); [Google Scholar]
- D. D’Agostino, P. Zangheri, B. Cuniberti, D. Paci, P. Bertoldi, Synthesis Report on the National Plans for Nearly Zero Energy Buildings (NZEBs); (2016); [Google Scholar]
- M. Panagiotidou, R.J. Fuller, Progress in ZEBs-A review of definitions, policies and construction activity, Energy Policy 62, 196–206, (2013). [Google Scholar]
- J. Laustsen, Energy efficiency requirements in building codes, energy efficiency policies for new buildings, IEA Inf. Pap. 1–85, (2008). [Google Scholar]
- G.A. Mertz, G.S. Raffio, K. Kissock, Cost optimization of net-zero energy house. In Proceedings of the Energy Sustainability Conference 2007; (2007); pp. 477–488. [Google Scholar]
- L. Verhulst, Kaseco: de eerste autonome bio-ecologische kaswoning in België, (2018), Available online: https://architectura.be/nl/nieuws/23731/kaseco-de-eerste-autonome-bio-ecologische-kaswoning-in-belgie (accessed on Jan 8, 2020). [Google Scholar]
- Kaseco, De eerste autonome bio-ecologische kaswoning in België, (2020), Available online: https://www.kaseco.plus/nl/autonome-bio-ecologische-kaswoning (accessed on Jan 8, 2020). [Google Scholar]
- Ökofen, ÖkoFEN Belgium stelt eerste offgrid-huis in België voor, (2018), Available online: https://www.oekofen.com/nl-be/nieuws/oekofen-belgium-stelt-eerste-offgrid-huis-in-belgie-voor–16711/ (accessed on Jan 8, 2020). [Google Scholar]
- Victron energy, ÖkoFEN Off-grid, (2020), Available online: www.offgridhuis.be (accessed on Jan 8, 2020). [Google Scholar]
- Snøhetta, ZEB Pilot House, (2020), Available online: https://snohetta.com/project/188-zeb-pilot-house (accessed on Jan 8, 2020). [Google Scholar]
- E. Giblin, Tasmanian off-grid home inspires sustainable living, (2018), Available online: https://www.realestate.com.au/lifestyle/tasmanian-off-grid-home-inspires-sustainable-living/. [Google Scholar]
- Whole Building Design Guide, Karuna House, (2016), Available online: https://www.wbdg.org/additional-resources/case-studies/karuna-house (accessed on Jan 8, 2020). [Google Scholar]
- SustainCo, STRAW - House Ebner Case study, (2014), Available online: https://docplayer.net/47512839-Straw-house-ebner-case-study.html (accessed on Jan 8, 2020). [Google Scholar]
- APOS, Šparna hiža”, (2020), Available online: https://apos-koprivnica.hr/ (accessed on Jan 8, 2020). [Google Scholar]
- Renover, Sems Have, (2020), Available online: https://renover.dk/projekt/sems-have/ (accessed on Jan 8, 2020). [Google Scholar]
- The Multi Comfort Hub, Villa Isover, (2020), Available online: https://multicomfort.saint-gobain.com/project-gallery/hyvinkaa-finland (accessed on Jan 8, 2020). [Google Scholar]
- BuildUp, Efficiency House Plus in Berlin, (2014), Available online: https://www.buildup.eu/en/practices/cases/efficiency-house-plus-berlin (accessed on Jan 8, 2020). [Google Scholar]
- Observatoire BBC, Maison Doisy, (2020), Available online: https://www.observatoirebbc.org/construction/1339 (accessed on Jan 8, 2020). [Google Scholar]
- C. Becchio, G.C. La Loggia, L. Orlietti, Certified ClimateHouse building in Mediterranean climate, Rehva (2014). [Google Scholar]
- RVO, Podium duurzame gebouwen, (2019), Available online: https://ez.maps.arcgis.com/apps/MapSeries/index.html?appid=6b991a9506804f138139b4938163b1d3 (accessed on Jan 8, 2020). [Google Scholar]
- Northeast Ssustainable Energy Association, Afton VA Near Zero Energy Home, (2020), Available online: http://nesea.org/project-case-study/afton-va-near-zero-energy-home/general (accessed on Jan 8, 2020). [Google Scholar]
- Baufritz, Show house Alpenchic, (2016), Available online: https://www.baufritz.com/uk/energy-and-safety/energy-self-sufficient-house/show-house-alpenchic/#site (accessed on Jan 8, 2020). [Google Scholar]
- Solencopower, Solenco Powerbox: The missing link for mass uptake of residential Solar PV, (2018), Available online: http://www.solencopower.com/front-page/capital-firm/ (accessed on Jan 8, 2020). [Google Scholar]
- Luc Pauwels, Wim De Maeseneer, Nederland stelt eerste waterstofwoning voor, (2019), Available online: https://www.vrt.be/vrtnws/nl/2019/09/11/nederland-stelt-eerste-waterstofwoning-voor/ (accessed on Jan 8, 2020). [Google Scholar]
- P. Pintos, Jenson-DeLeeuw NZE House, (2019), Available online: https://www.archdaily.com/924727/jenson-deleeuw-nze-house-paul-lukez-architecture?ad_source=search&ad_medium=search_result_projects (accessed on Jan 8, 2020). [Google Scholar]
- International Passive House Association, Passive house Ibaraki Japan, (2020), Available online: https://passivehouse-database.org/#d_2050 (accessed on Jan 8, 2020). [Google Scholar]
- International Passive House Association, Passive house Ganwondo, Available online: https://passivehouse-database.org/#d_4017%0A (accessed on Jan 8, 2020). [Google Scholar]
- International Passive House Association, Passive house Guangdong, Available online: https://passivehouse-database.org/#d_4243%0A (accessed on Jan 8, 2020). [Google Scholar]
- International Passive House Association, Passive House Roma Norte, Available online: https://passivehouse-database.org/#d_2959 (accessed on Jan 8, 2020). [Google Scholar]
- Clément Guillard, Troni Brien House in the mountains, (2015), Available online: https://www.construction21.org/case-studies/h/troni-house.html (accessed on Jan 14, 2020). [Google Scholar]
- C21 France la Redaction, Maison des Yvelines - Nubian Vault, (2016), Available online: https://www.construction21.org/case-studies/h/maison-des-yvelines-nubian-vault.html (accessed on Jan 14, 2020). [Google Scholar]
- R. Hitchin, K. Engelund Tomsen, K.B. Wittchen, Primary Energy Factors and Members States Energy Regulations; (2018); [Google Scholar]
- AIE, DEA, Dong energy, EHPA, ECI, Schneider Electric, EnergiNorge, Statkraft, Verbund, Euha, et al., The importance of a revised Primary Energy Factor (PEF): Towards achieving the EU’s long term energy & climate targets; (2017); [Google Scholar]
- A. Esser, F. Sensfuss, Evaluation of primary energy factor calculation options for electricity; (2016); [Google Scholar]
- ADAPT consulting as, Conversion Factors for Electricity in Energy Policy; (2013); [Google Scholar]
- H. Erhorn, H. Erhorn-Kluttig, Selected examples of Nearly ZeroEnergy Buildings, 74, (2014). [Google Scholar]
- R.S. Srinivasan, W.W. Braham, D.E. Campbell, C.D. Curcija, Re(De)fining Net Zero Energy: Renewable Emergy Balance in environmental building design, Build. Environ. 47, 300–315, (2012). [Google Scholar]
- E. Musall, T. Weiss, K. Voss, A. Lenoir, Net Zero Energy Solar Buildings: An Overview and Analysis on Worldwide Building Projects, EuroSun 1–9, (2006). [Google Scholar]
- M. Hossain, K. Tushar, C. Assi, S. Member, M. Maier, S. Member, Smart Microgrids: Optimal Joint Scheduling for Electric Vehicles and Home Appliances, IEEE Trans. Smart Grid 5, 239–250, (2014). [CrossRef] [Google Scholar]
- P. Chastas, T. Theodosiou, K.J. Kontoleon, D. Bikas, The effect of embodied impact on the cost-optimal levels of nearly zero energy buildings: A case study of a residential building in Thessaloniki, Greece, Energies 10, (2017). [Google Scholar]
- M. Royapoor, T. Roskilly, Building model calibration using energy and environmental data, Energy Build. 94, 109–120, (2015). [Google Scholar]
- E.M. Ryan, T.F. Sanquist, Validation of building energy modeling tools under idealized and realistic conditions, Energy Build. 47, 375–382, (2012). [Google Scholar]
- P.A.T. D. Crawley, S.D. Pless, Getting to Net Zero Energy Buildings, ASHRAE J. 51, 18–25, (2009). [Google Scholar]
- P. Torcellini, S. Pless, M. Deru, D. Crawley, Zero Energy Buildings: A Critical Look at the Definition. In Proceedings of the ACEEE Summer Study Pacific Grove; (2006); p. 15. [Google Scholar]
- M. Almeida, M. Ferreira, Cost effective energy and carbon emissions optimization in building renovation (Annex 56), Energy Build. 152 718–738, (2017). [Google Scholar]
- A.L. Pisello, M. Bobker, F. Cotana, A building energy efficiency optimization method by evaluating the effective thermal zones occupancy, Energies 5, 5257–5278, (2012). [Google Scholar]
- A.J. Marszal, P. Heiselberg, A literature review of Zero Energy Building (ZEB) definitions; Aalborg University, Denmark, (2009); [Google Scholar]
- CA EPBD, (CT1) New buildings & NZEBs, (2018), Available online: https://epbd-ca.eu/ca-outcomes/outcomes-2015-2018/book-2018/ct/new-buildings-nzebs. [Google Scholar]
- G. Paoletti, R.P. Pascuas, R. Pernetti, R. Lollini, Nearly Zero Energy Buildings: An overview of the main construction features across Europe, Buildings 7, (2017). [Google Scholar]
- R.L. Carvalho, O.M. Jensen, A. Afshari, N.C. Bergsøe, Wood-burning stoves in low-carbon dwellings, Energy Build. 59, 244–251, (2013). [Google Scholar]
- L. Dion, D. Molesworth, G. Proulx-gobeil, An Alternative Energy Source for The Raymond Greenhouse: Wood Pellets; (2008); [Google Scholar]
- G. Di Giacomo, L. Taglieri, Renewable energy benefits with conversion of woody residues to pellets, Energy 34, 724–731, (2009). [CrossRef] [Google Scholar]
- C.W. Package, D9. 3: Report on Attendance at Events Held By Other SCC01 Coordinators, 1–15, (2019). [Google Scholar]
- Urban Europe, Positive Energy Districts (PED), (2019), Available online: https://jpi-urbaneurope.eu/ped/ (accessed on Jan 23, 2020). [Google Scholar]
- D. Unger, J.M.A. Myrzik, Agent based management of energy storage devices within a Virtual Energy Storage. In Proceedings of the Energytech IEEE 2013,; IEEE, (2013); pp. 1–6. [Google Scholar]
- IEA, Annex 56: Cost-effective energy and carbon emission optimization in building renovation, (2017), Available online: http://www.iea-annex56.org/index.aspx?MenuID=1. [Google Scholar]
- Northeast Sustainable Energy Association, Torcellini Residence, Available online: http://nesea.org/project-case-study/torcellini-residence/energy (accessed on Jan 8, 2020). [Google Scholar]
- Northeast Ssustainable Energy Association, Charlotte VT House, (2020), Available online: http://nesea.org/project-case-study/charlotte-vt-house/energy (accessed on Jan 8, 2020). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.